一、灌注桩后压浆技术应用领域的拓展与施工实践(论文文献综述)
赵杰,付玲玲,樊雷[1](2021)在《钻孔灌注桩后压浆技术的设计与施工分析》文中研究表明钻孔灌注桩后压浆技术在我国建设领域的应用较为广泛,适用于不同地质条件和注浆位置,相关理论研究和实践探索受到业界重视。基于此,本文简单介绍钻孔灌注桩后压浆技术应用中的设计与施工要点,并结合实例深入探讨钻孔灌注桩后压浆技术的具体应用,结合试验可以确定,钻孔灌注桩后压浆技术能够较好地满足桥梁工程建设需要,具备较高推广价值。
邓会元[2](2021)在《滨海吹填围垦区堆载作用下桩基承载特性研究》文中研究表明随着我国东部沿海地区经济建设的发展,土地资源紧张已成为制约城市发展的重要因素,为此,滩涂围垦拓展生存空间已成为当前解决土地紧缺问题的主要方式。考虑到滨海围垦区土质较差、软土层较厚,后期围垦填土易诱发土体不均匀沉降及水平侧向变形,造成临近桥梁及建筑物基础发生沉降、开裂、偏移等一系列岩土工程问题,严重影响桥梁等工程正常使用。然而,目前对围垦区桥梁及建筑物的桩基础受堆载影响的承载特性研究相当匮乏,缺乏系统的计算方法与设计理论,既有设计规范已难以对围垦区堆载影响下桩基础进行安全经济设计,这使得堆载作用下桩基础安全经济设计及防护成为制约滨海围垦工程顺利发展的重点难题。因此,迫切需要系统深入开展滨海吹填围垦区堆载作用对临近桩基的影响研究。本文主要由浙江省交通运输厅项目“软土地区吹填(开挖)对桥梁桩基的影响及处理措施研究”(编号:2014H10)、“深厚软基路段桥梁工程桩基长期沉降特性研究”(编号:8505001375)资助。本文以理论推导及试验研究为主,经过大量文献调研及归纳总结,系统地开展了滨海吹填围垦区堆载作用下桩基承载特性研究。本文所做主要工作及结论如下:(1)基于滨海软黏土固结排水蠕变试验,通过采用传统元件模型(Merchant模型和Burgers模型)、以及不同经验模型,描述了软黏土固结蠕变特性,揭示了软黏土应力-应变以及应变-时间变化规律;基于传统Merchant模型,引入Abel黏壶单元,采用Caputo型分数阶函数建立了分数阶Merchant蠕变模型。通过分数阶Merchant蠕变模型,预测了滨海软黏土蠕变应变-时间变化规律,发现分数阶模型比传统蠕变模型更适用于描述滨海软黏土蠕变特性;(2)基于Boussinesq附加应力计算理论,推导了矩形分布荷载以及条形分布荷载下堆载区域内和堆载区域外不同土体深度位置的竖向附加应力理论计算公式;基于Mesri蠕变模型和Boussinesq附加应力计算理论,提出了软黏土地基长期沉降计算方法,对现场局部堆载和路堤条形堆载下地基长期沉降进行了预测分析,论证了沉降计算方法的适用性;(3)基于三折线荷载传递模型,建立了单桩负摩阻力计算方法,推导了弹性、硬化、以及塑性等不同阶段的桩身沉降和轴力的解析解;基于太沙基一维固结理论、Mesri蠕变模型及双曲线模型,建立了考虑固结蠕变效应的桩基负摩阻力计算方法,通过迭代法求解了桩身轴力以及中性点位置。此外,基于建立的负摩阻力计算方法,研究了固结度、桩顶荷载、桩顶荷载和堆载施加次序、桩身刚度、蠕变参数等因素对桩基负摩阻力的影响,发现固结和蠕变沉降会降低桩基承载力、增加桩的沉降,揭示了填土固结场地桩基承载力弱化的病害机理;(4)基于温州围垦区单桩负摩阻力堆载试验,研究了桩身负摩阻力、桩土沉降以及中性点随时间变化规律,通过试验发现堆载后土体沉降、桩基沉降、下拉力随时间基本呈双曲线增加趋势,桩土沉降及下拉力在堆载后3个月左右趋于稳定,揭示了滨海围垦区桩基负摩阻力发挥机制及时间效应特性;(5)基于Boussinesq附加应力改进解,推导了矩形分布荷载、条形分布荷载、梯形条形分布荷载等不同地表荷载分布形式下水平附加应力计算公式及桩身被动荷载计算公式,并进一步推导了被动排桩剩余水平推力。通过考虑临界土压力长期演化及桩周软黏土模量长期蠕变衰减特性,结合非线性p-y曲线模型,基于压力法建立考虑时间效应的被动桩两阶段分析法,通过差分法对被动桩平衡微分方程进行求解;(6)基于温州及台州湾围垦区非对称堆载试验,研究了桩土变形、桩侧土抗力、桩身轴力以及桩身弯矩等参数随时间变化规律,探讨了被动桩开裂问题、被动桩负摩阻力问题、桩侧土绕流机理、桩体遮拦效应以及土拱效应机理,揭示了斜交非对称堆载下弯扭耦合变形机制以及被动桩长期变形病害机理。
李千[3](2019)在《削扩支盘抗拔桩受力特性试验测试及工程应用研究》文中研究表明随着超高层建筑的不断涌现,多层地下空间的开发利用也日益增多,地下结构抗浮问题也摆在工程师面前。旋挖灌注桩工作效率高、施工质量好、尘土泥浆污染少,在铁路桥及大型建筑的基础桩施工中得以广泛应用。而当旋挖灌注桩遇到地下水丰富的深厚残积土及软弱地层且成桩条件不佳时,等直径的旋挖灌注桩抗拔承载力可能无法满足设计要求。本文结合工程实例,针对等直径旋挖灌注桩抗拔承载力不足的情况,提出了两种解决方案:桩侧桩端后注浆方案及削扩支盘桩方案。通过对两种方案桩型进行承载机理分析,并从理论上计算其单桩竖向抗拔承载力;对相同桩径、桩长的旋挖桩成桩后进行桩侧桩端后注浆处理,待桩身强度达到龄期要求后进行单桩竖向抗拔静载试验;对相同桩径、桩长的旋挖桩在成孔过程中,在桩底及其上约6.0m处两个部位用削扩钻头对土体进行侧向削扩,削扩后形成盘状空腔,然后成桩,待桩身强度达到龄期要求后进行单桩竖向抗拔静载试验。通过单桩竖向抗拔静载试验,测试抗拔桩的受力和变形性能,用具体的数据量化分析验证两种改进后的桩型在提高单桩竖向抗拔承载力方面的可行性,并对两种方案在抗拔位移量控制、质量、造价以及工期方面进行了对比分析,评价桩型改进后的实际效果。研究结果表明,等直径普通桩及后注浆桩理论计算抗拔承载力采用的桩侧摩阻力标准值,取地勘报告提供的下限值的0.61倍得到的承载力与实际试验测得的承载力结果相一致;上述改进后的两种方案理论上计算得到的单桩竖向抗拔承载力均有较大幅度提高,削扩支盘桩单桩竖向抗拔承载力理论计算值可达到后注浆桩的1.4倍;实际的抗拔试验表明,两种方案承载力均能达到设计要求,与理论计算相吻合;后注浆处理的旋挖灌注桩抗拔承载力至少提高66%;削扩支盘桩桩顶最大变形位移量,大部分能控制在15mm以内,且U-δ曲线基本上呈缓变性;削扩支盘桩方案较后注浆方案工期更短,质量更有保证,且增加成本较后注浆方案至少节省50%;总体上,削扩支盘桩方案在承载力、抗拔位移量控制、质量、造价和工期方面,相比后注浆方案均具有优势。本项目的研究很好地解决了工程设计与施工中的技术难题。
陈雪映[4](2019)在《灌注桩后压浆技术注浆加固机理试验研究》文中研究说明后压浆技术是改善灌注桩承载性能的一种经济、有效的方法,在国内外有较为广泛的应用。然而,现在仍缺少一套较为成熟的理论指导后压浆技术在工程中的应用,对后压浆加固作用机理方面的研究仍需进一步深化。为此,本文依托浙江省乐清湾大桥灌注桩后压浆工程,并结合现场试验、室内模型试验的研究方法对灌注桩后压浆技术的加固机理进行研究,主要工作及研究成果如下:(1)基于乐清湾大桥工程开展的6根桩端压浆桩现场静载试验,研究桩端压浆桩的承载性能,并基于试验数据分析桩端压浆的加固机理。分析结果表明:桩端后压浆对灌注桩极限承载力提升幅度在38.03%61.87%之间,持力层为砾砂、风化基岩的试桩承载力提升幅度大于持力层为黏性土的试桩;桩端压浆能改善桩端土体的力学性质,并能通过浆液上返作用改善桩-土接触面性质,提高桩侧摩阻力;水泥浆液在粗粒土和黏性土中有不同的扩散机制,压浆后的桩端土体也呈现不同的破坏模式。(2)在室内开展模型桩的桩侧压浆试验以及压浆桩的竖向、水平静载试验,并设计了对比试验,依据试验结果分析桩侧压浆过程中浆液与土体的相互作用,研究了桩侧压浆提高桩基竖向、水平承载力的作用机理,并重点分析了浆液结石体与桩身的协同承载作用。分析结果表明:桩侧压浆能较大幅度提高模型桩的竖向、水平承载力,且浆液结石体和模型桩桩身的协同承载作用是影响压浆桩承载力的关键因素。(3)根据乐清湾大桥的工程背景,引出海水对浆液结石体的侵蚀问题。制作浆液结石体试块并将其放入海水中养护,运用微型贯入试验研究海水侵蚀对浆液结石体的强度的劣化作用,并运用XRD衍射分析和SEM电镜扫描研究海水侵蚀浆液结石的化学原理和浆液结石体的微观结构变化,根据试验结果讨论了海水侵蚀作用对压浆桩长期承载性能的影响。分析结果表明:海水中的SO42-和Mg2+等侵蚀性离子会于浆液结石体中的水泥水化物反应,破坏其微观结构,从而造成结石体强度的劣化;侵蚀作用的强弱与结石体水泥含量、侵蚀时间以及海水离子浓度有关。(4)基于乐清湾大桥工程的灌注桩后压浆施工参数资料,借助数据分析软件SPSS22寻求压浆量、压浆压力两个关键施工参数与压浆土层、压浆工艺等外在施工条件之间的联系。分析结果表明:压浆压力受压浆深度、压浆土层类别、压浆工艺以及成桩龄期等因素的影响;压浆量与压浆压力直接相关,直管压浆的压浆压力往往达不到设计终止压力值,导致压浆量偏大,U管压浆的压浆压力能得到保证,可以在不超量压浆的条件下保证压浆质量。
万志辉[5](2019)在《大直径后压浆桩承载力提高机理及基于沉降控制的设计方法研究》文中指出后压浆技术是指在钻孔灌注桩中预设压浆管路,成桩后采用压浆泵压入水泥浆液来增强桩侧土和桩端土的强度,从而提高桩基承载力和减少沉降量的一项技术。后压浆技术因其工艺简练、成本低廉与加固效果可靠,已被广泛应用于超高层建筑、大跨径桥梁和高速铁路等基础工程中。当前后压浆的适用对象由中小直径、中短桩发展到大直径、超长桩。然而,大直径桩因研究手段受限,完整的现场实测数据偏少,造成对大直径后压浆桩的加固机理、承载特性及设计方法尚缺乏系统的研究,使其理论研究滞后于工程实践。本文通过理论分析、室内试验、原位试验及数理统计等多种手段对大直径后压浆桩承载力增强机理和变形控制设计方法开展了深入研究。主要工作及研究成果如下:(1)后压浆桩增强效应作用机理。综合考虑压浆对桩端土体的加固与桩端扩大头效应这两方面因素对桩端阻力的增强作用,采用双曲线函数模拟桩端阻力发挥特性,引入了桩端土初始刚度、桩端阻力的增强系数,并在球孔扩张理论的基础上提出了浆泡半径的解析解,为扩大头加固机理提供了理论计算依据;考虑浆液上返对后压浆桩侧摩阻力的增强作用,基于浆液黏度时变性特征建立了浆液上返高度计算模型,给出了参数取值的确定方法及成层土中浆液上返高度的迭代算法,通过工程实例验证了其合理性;基于现场对比试验研究了后压浆对桩基阻力相互作用的影响,并从理论上分析了后压浆对桩基阻力发挥的相互强化作用机理。此外,通过工程实例对后压浆桩侧摩阻力与端阻力的发挥特性进行了深入地分析,验证了后压浆对桩基阻力的增强作用,并分析了预压作用对后压浆桩基阻力的重要影响,进而全面揭示了后压浆桩增强效应作用机制。(2)后压浆钢管桩承载性状模型试验。在硅质砂与钙质砂两种不同的模型地基中开展了静压沉桩方式下钢管桩的竖向受荷和水平受荷试验,研究了竖向和水平荷载作用下桩侧后压浆对两种不同砂土中单桩承载特性的影响规律。结果表明,未压浆单桩在钙质砂中的竖向和水平承载特性要弱于硅质砂,原因在于沉桩过程中钙质砂易造成侧向挤压作用引起的侧摩阻力变化小于颗粒破碎效应带来的负面效应;而压浆后,单桩竖向和水平承载力在两种不同的砂土地基中均得到了大幅提升,且表现出大致相同的承载特性。通过开挖分析压浆单桩浆液加固体的分布情况,揭示了砂土中桩-土-浆液相互作用机理。(3)大直径后压浆灌注桩承载性状原位试验。利用大直径组合压浆与桩侧压浆桩的现场对比试验,揭示了不同压浆类型对大直径桩承载特性的影响规律,并且表明组合压浆桩承载性能明显优于桩侧压浆桩;在使用荷载下大直径超长桩的桩顶沉降约90%来自桩身压缩,在极限荷载下大直径超长桩仍表现为摩擦桩性状,在超长桩设计时应考虑桩身压缩引起的沉降。同时,对珊瑚礁灰岩地层中的3根大直径后压浆桩开展了现场静载试验,并对桩基承载力性状、桩身轴力传递特性及桩基阻力发挥特性进行了深入分析,研究表明后压浆技术可应用于珊瑚礁灰岩地层,并能有效地提高桩基承载力和减小沉降量。最后,结合现场长期静载试验,研究了后压浆桩的长期承载性状以及桩基阻力随时间的变化规律,结果表明后压浆桩承载力存在时间效应,桩端阻力和桩侧摩阻力会随时间增长。(4)组合后压浆加固效果的综合检测方法。通过钻孔取芯试验、标准贯入试验以及电磁波CT试验综合评价了组合后压浆的加固效果。结果显示水泥浆液下渗、上返及横向渗透至地层中形成水泥土加固体,增强了桩侧、桩端土层的强度和刚度;压浆后桩侧土的标贯击数要明显高于压浆前,同时给出了基于压浆前标贯击数预测压浆前、后侧摩阻力的经验方法;电磁波CT技术检测压浆效果是可行的,绘制出各剖面视吸收系数反演图像可以观测到桩体、浆液及土体的空间分布形态,且能确定水泥浆液在桩端、桩侧土体中的扩散范围。(5)大直径后压浆桩承载力计算及压浆参数设计。通过收集的139个工程中716根试桩静载试验资料,对后压浆桩与未压浆桩的有关参数作了统计分析,利用极限承载力总提高系数法提出了大直径后压浆桩承载力经验预估方法;采用以土层为分类的侧摩阻力及端阻力增强系数法建立了适用于不同压浆类型的大直径后压浆桩承载力计算方法;给出了以土层为分类的桩侧、桩端压浆量经验系数的取值范围,提出了适用于不同压浆类型的大直径桩压浆量估算方法。通过大量的实测数据验证了后压浆桩承载力与压浆量计算公式的适用性,研究成果纳入了中华人民共和国行业标准《公路桥涵地基与基础设计规范》(2017修订版)及工程建设行业标准《公路桥梁灌注桩后压浆技术规程》(T/CECS G:D67-01-2018)。(6)大直径后压浆桩沉降计算方法。提出了两种不同的后压浆单桩沉降计算方法:第一种,在未经压浆的大直径桩基础沉降计算方法的基础上引入了后压浆沉降影响系数,基于统计分析给出了后压浆沉降影响系数的建议取值范围,提出了一种适用于不同土层的大直径后压浆桩沉降计算经验预估方法;第二种,在荷载传递法的基础上,采用双曲线函数的荷载传递模型,在考虑浆泡半径和桩身水泥结石体厚度的基础上建立了后压浆桩荷载沉降关系的计算方法。最后通过工程实例验证了两种设计方法的合理性。
靳皓宇[6](2017)在《钻孔灌注桩后压浆技术在武汉地区的应用》文中提出钻孔灌注桩后压浆技术,是一种新型的灌注桩辅助增强技术。该技术不仅保留了钻孔灌注桩原有的优点,而且还能对其不足进行修补和改善。通过选择合适的注浆装置,设计合理的注浆参数,使浆液与桩周土体达到最佳作用效果来提高桩体的总承载力、降低总沉降量,钻孔灌注桩后压浆技术可以解决近年来建设大型、超大型建筑群承载力不足以及沉降量超标等工程问题。由于其优点多,工程效益显着,该技术值得被推广应用到各种大型、超大型的建筑工程中。本文依托武汉帝斯曼工程实例,考虑该工程场地的地质特点,在注浆装置方面结合国内外注浆装置的研究现状,对比类似地区注浆装置的选用及最终工程效果,本工程采用了桩端开放式的注浆装置,并且采用注浆压力和注浆量“双控”的方式进行注浆,结果表明应用该种注浆装置在武汉地区能够使浆液与桩周土体达到最佳作用状态。本工程对8根桩体进行了静载试桩试验,检测结果表明,应用该技术桩体竖向承载力可提高172%-200%,沉降量可降低42%-64%,撤去上覆荷载后,应用钻孔灌注桩后压浆技术的桩体可以反弹25%-35%,而未应用该技术的桩体撤去上覆荷载后反弹仅为0-10%,通过以上数据表明,应用钻孔灌注桩后压浆技术不仅能够提高桩体总承载力和降低总沉降量,还能提高桩体的抗拉、抗拔性能。此外,本文还对钻孔灌注桩后压浆技术参数确定方法进行了对比,同时也对钻孔灌注桩后压浆技术如何克服传统灌注桩的通病做了进一步的阐述。通过本课题的开展,可为武汉地区及类似该地区地质特点的工程应用钻孔灌注桩后压浆技术提供参考和借鉴,也为进一步探究该技术作用机理和改进注浆装置奠定很好的基础。
乔文开[7](2016)在《深厚软基超长钻孔灌注桩后压浆关键技术研究》文中研究指明钻孔灌注桩后压浆技术可以有效地减少桩底的沉渣和桩侧泥皮对桩基的固有缺陷,能够大幅度提高桩基的承载能力,以及改善桩—土之间的相互作用关系,并能够减少桩身长度。目前,随着桩基工程技术的迅猛发展,该技术表现出强劲的发展势头,并且应用范围在不断的扩大。本论文通过绍兴市钱清镇东大小江引桥现场试验对钻孔灌注桩后压浆技术的压浆理论和作用机理进行分析、重点对深厚软基超长桩后压浆工艺控制技术研究、并进行现场试验研究通过静载试验和声测对压浆效果进行检测、及压浆过程中出现的问题进行分析研究,得出如下结论:1.在对比分析国内外钻孔灌注桩后压浆研究的基础上,对桩端桩侧联合注浆及桩端注浆各方面理论的进行深入研究,将使人们对后压浆机理的认识不断提高,对影响桩端(侧)压力注浆承载力因素的认识不断深入。对注浆体细观机理及力学性质、注浆浆液扩散方式进行研究完善。2.在对比分析国内外后压浆工艺的基础上,进行深厚软基超长钻孔灌注桩后压浆的设计,确定桩端桩侧联合注浆施工工艺、注浆方式,以及后压浆设备及工艺选型原则。3.依托现场试验对桩端桩侧联合注浆及桩端注浆的开塞时间、注水量开塞压力、注浆量、注浆压力、注浆顺序、以及注浆过程中出现的相关问题进行了分析研究并采取了相关措施。针对桩侧PVC管注浆过程成功低的情况,采用无缝钢管弯圆代替,提高桩侧注浆的可靠性等。4.通过对注浆桩和非注浆桩两种试验桩进行现场静载荷试验,对静载荷试验结果进行分析研究,通过对Q-s曲线以及静载荷试验下桩身轴力、侧摩阻力分析研究,得到后注浆灌注桩荷载传递机理与破坏特性以及承载力提高设计参数;并通过声波透射法对试验桩进行无损检测。可用于指导工程实践和理论研究。经实例验证具有较好的经济效益。
刘建梅[8](2014)在《桥梁钻孔灌注桩后压浆技术应用研究》文中研究说明进入21世纪,我国经济持续以较快的速度发展,随之而来的是急剧增长交通量对现有的公共交通设施提出了更高的要求,国家为了满足日益增长交通量的需求不断的加大基础建设,每年都有上千公里高等级公路建成。部分在黄土和砂土地区修建高等级公路由于受到黄土和砂土自身结构的特殊性(摩阻力低、承载力弱、湿陷性等),会对桥梁下部桩基产生一系列的问题,如桩长过长、桩径过大和后期承载力不足等,不仅施工难度大,而且施工费用高,造成了较大的浪费。当前钻孔灌注桩技术已得到广泛的应用,但受桩端软弱土层的影响会大大消弱桩基的承载力和稳定性,尤其是黄土和砂土地区桥梁,由于其自身结构的特殊性,还会诱发桥梁桩基产生一系列的病害。采用后压浆技术能有效提高桩端承载力和侧摩阻力,当前该技术的应用还不够广泛,因为很多技术虽然在理论上已经成熟,但相关技术规范偏少,在实际施工应用过程中因害怕操纵不当没能起到预期效果,因此,很多人宁愿多浪费也不采用该技术。本文通过分析钻孔灌注桩后压浆技术的工作原理,得出通过后压浆技术能有效提高桩底承载力和加大桩端侧土的摩阻力,能够有效缩短桩长和减小桩径。本文以西安—咸阳机场专用高速段工程桩端后压浆钻孔灌注桩为工程依托,以研究钻孔灌注桩后压浆桩基的受力机理,为后压浆技术的应用与推广提供理论基础。论文在总结当前国内外研究现状的基础上,采用了理论分析、数值模拟和现场试验等相结合的技术手段,对典型地区桥梁桩端后压浆技术进行了的研究分析,研究成果为实际工程提供理论及技术指导。论文主要研究工作如下:首先本文系统的分析了桥梁钻孔灌注桩后压浆理论和施工工艺,得出切实可行的、适合于公路桥梁建设的后压浆施工操作规程以及质量检验标准,指导、规范该工艺在公路桥梁领域的应用;进而通过数值模拟方法,在建立合理的地质力学模型和现场静载荷试验的基础上,分析对比常规直径公路桥梁后压浆灌注桩与常规灌注桩桩基极限承载力、桩身内力发挥性状等相关参数,研究公路桥梁钻孔灌注桩后压浆技术工作机理;最后通过现场静载试验,对使用后压浆和未使用压浆的试桩进行现场试验,测试在不同荷载下桩身轴力、桩侧和桩端阻力各控制参量的分布情况,并对试验数据进行对比分析,评价其实施效果,为后压浆技术的推广提供了技术支持。
《中国公路学报》编辑部[9](2014)在《中国桥梁工程学术研究综述·2014》文中指出为了促进中国桥梁工程学科的发展,系统梳理了各国桥梁工程领域(包括高性能材料、桥梁作用及分析、桥梁设计理论、钢桥及组合结构桥梁、桥梁防灾减灾、桥梁基础工程、桥梁监测、评估及加固等)的学术研究现状、热点前沿、存在问题、具体对策及发展前景。首先在总结了中国桥梁工程建设成就的同时对未来桥梁工程的发展趋势进行了展望;然后分别对上述桥梁工程领域各方面的内容进行了细化和疏理:高性能材料方面重点分析了超高性能混凝土(UHPC)和CFRP材料,桥梁作用方面分析了车辆荷载和温度,钢桥及组合结构桥梁方面分析了钢桥抗疲劳设计与维护技术和钢-混凝土组合桥梁,桥梁防灾减灾方面分析了抗震、抗风、抗火、抗爆和船撞及多场、多灾害耦合;最后对无缝桥、桥面铺装、斜拉桥施工过程力学特性及施工控制、计算机技术对桥梁工程的冲击进行了剖析,以期对桥梁工程学科的学术研究提供新的视角和基础资料。
康琦[10](2014)在《典型黄土地区桥梁桩端后压浆钻孔灌注桩受力特性研究》文中认为目前钻孔灌注桩技术在高层建筑和大承载力的基础中已广泛应用,但受桩端软弱土层的影响会大大消弱桩基的的承载力和稳定性,尤其对于黄土区桥梁,由于黄土结构的特殊性,会对桥梁桩基产生一系列的病害。采用桩端后压浆技术能解决桩端软弱层带来的不足,但目前的研究只建立在半经验半理论的基础上,因此确定黄土区桩端后压浆桩基承载力是目前桥梁桩基设计中亟待解决的关键问题。本文结合西安—咸阳机场专用高速段工程桩端后压浆钻孔灌注桩的现场静载试验,以研究后压浆桩基的受力机理为主线,以确定桩基承载性能为目标,在总结国内外研究现状的基础上,采用现场试验、理论分析和数值模拟相结合的技术手段,对典型黄土地区桥梁桩端后压浆桩承载特性进行系统的研究,期望填补桩端后压浆桩在黄土区桥梁桩基受力分析方面的空白,为实际工程需求提供理论及方法支撑,主要研究内容如下:1.运用Vesic球形扩张原理对桩端后注浆桩基进行分析,对Vesic法中的刚度系数指标进行修正,克服了原公式不能考虑桩端沉渣、土层空隙等施工过程中带来的影响,得出后压浆桩基在施工过程中,确定土层发生剪切破坏前的水泥浆凝固半径和桩端产生的塑性区范围。2.基于桩端后压浆的受力机理分析,明确了荷载传递的主要影响因素及承载力计算应考虑的因素,确定了注浆体直径、注浆体高度与桩径之比的控制范围,为黄土地区桥梁桩端后压浆钻孔灌注桩的设计与施工提供了比较合理的技术指标。3.考虑黄土的湿陷变形受土体模量、湿陷厚度和湿陷系数等不同因素的影响,基于弹性理论,结合桩端后压浆钻孔灌注桩的荷载传递机理分析,提出了典型黄土地区桥梁桩端后压浆的桩基承载力和沉降计算公式,并通过与依托桥梁实测数据的对比分析,验证了理论公式的适用性和可靠性。4.分别对后压浆和未压浆的试桩进行现场试验,测试在不同荷载下桩身轴力、桩侧和桩端阻力的分布,并对试验数据进行对比分析,探讨了桩端后压浆桩基的荷载传递规律,对采用后压浆技术的钻孔灌注桩的工作机理进行了系统的研究,为典型黄土区桥梁钻孔灌注桩的设计和施工提供了合理的技术指标。5.结合现场试验,采用非线性有限元分析软件对后注浆桩基的承载性能进行了数值分析,根据模拟计算结果与现场试验结果对比,基于黄土地区桥梁桩端后压浆钻孔灌注桩在设计荷载作用下的荷载沉降机理,对桩端后压浆、桩侧压浆以及桩端与桩侧同时压浆等不同工况对灌注桩承载性能的影响进行了研究,并分析了桩端土变形模量提高后及浆液沿桩侧不同程度的上升机率对桥梁桩基沉降的影响。
二、灌注桩后压浆技术应用领域的拓展与施工实践(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、灌注桩后压浆技术应用领域的拓展与施工实践(论文提纲范文)
(1)钻孔灌注桩后压浆技术的设计与施工分析(论文提纲范文)
0 引言 |
1 设计与施工要点 |
1.1 设计要点 |
1.2 施工要点 |
2 实例分析 |
2.1 工程概况 |
2.2 设计与施工要点 |
2.3 检测分析 |
3 结论 |
(2)滨海吹填围垦区堆载作用下桩基承载特性研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 引言 |
1.2 研究背景及研究意义 |
1.2.1 吹填围垦工程特性 |
1.2.2 滨海围垦滩涂现状 |
1.2.3 堆载引起桩基工程危害问题 |
1.2.4 研究意义 |
1.3 国内外研究现状 |
1.3.1 堆载下软黏土变形特性研究现状 |
1.3.2 对称堆载下桩基负摩阻力研究现状 |
1.3.3 非对称堆载作用下被动桩研究现状 |
1.4 堆载对桩基影响现状分析评价 |
1.5 主要研究内容及技术路线 |
第二章 滨海软黏土蠕变特性及沉降规律 |
2.1 滨海典型软黏土固结蠕变特性试验研究 |
2.1.1 温州地区典型软黏土固结蠕变特性试验分析 |
2.1.2 杭州湾滩涂区典型黏性土固结蠕变特性试验分析 |
2.2 软黏土蠕变模型及参数辨识 |
2.2.1 经典元件模型 |
2.2.2 经验模型 |
2.2.3 分数阶蠕变模型 |
2.2.4 流变模型对比分析 |
2.3 堆载作用下基于Mesri蠕变模型土体沉降预测方法 |
2.3.1 堆载作用下附加应力计算 |
2.3.2 基于Mesri蠕变模型地基沉降计算方法 |
2.3.3 局部堆载沉降预测实例分析 |
2.3.4 条形路堤堆载沉降预测实例分析 |
2.4 本章小结 |
第三章 对称堆载下桩-土相互作用机理及现场试验 |
3.1 对称堆载下桩基负摩阻力产生机理 |
3.2 土体竖向位移作用下桩-土极限负摩阻力计算方法 |
3.3 堆载作用下负摩阻力影响深度研究 |
3.3.1 常用计算方法 |
3.3.2 附加应力估算法 |
3.3.3 工程实例分析 |
3.4 基于三折线荷载传递函数的负摩阻力解析解 |
3.4.1 桩周土和桩端土处于弹性阶段 |
3.4.2 桩周土部分进入硬化阶段和桩端土处于弹性阶段 |
3.4.3 桩周和桩端分别处于部分塑性阶段和弹性阶段 |
3.4.4 桩周土部分进入塑性阶段和桩端土处于塑性硬化阶段 |
3.4.5 桩周和桩端处于塑性硬化阶段 |
3.4.6 桩周土进入完全塑性阶段和桩端土进入塑性硬化阶段 |
3.4.7 工程算例分析 |
3.5 基于位移控制双曲线荷载传递函数的负摩阻力数值解 |
3.5.1 土体固结沉降计算方法 |
3.5.2 桩侧摩阻力双曲线传递模型 |
3.5.3 桩端阻力传递模型 |
3.5.4 计算模型的求解 |
3.5.5 算例分析 |
3.6 基于Mesri蠕变模型桩基负摩阻力数值解 |
3.6.1 任意时刻土体沉降计算方法 |
3.6.2 考虑蠕变效应桩基负摩阻力计算模型分析 |
3.7 对称堆载下单桩负摩阻力现场试验及分析 |
3.7.1 试验概述及土层参数 |
3.7.2 静载试验结果分析 |
3.7.3 对称堆载下单桩负摩阻力发展机理现场试验分析 |
3.8 考虑固结及蠕变效应桩基负摩阻力计算分析 |
3.8.1 不同附加应力比影响深度计算分析 |
3.8.2 实测结果对比分析 |
3.8.3 不同固结度影响分析 |
3.8.4 不同桩顶荷载影响分析 |
3.8.5 桩顶荷载和堆载施加次序影响分析 |
3.8.6 桩身刚度影响分析 |
3.8.7 堆载尺寸影响分析 |
3.8.8 蠕变参数影响分析 |
3.9 本章小结 |
第四章 非对称堆载下桩-土相互作用机理及现场试验 |
4.1 基于土压力法被动桩两阶段分析 |
4.1.1 基于土压力法被动桩计算模型 |
4.1.2 被动桩桩侧土压力分布模式 |
4.1.3 堆载下水平附加应力计算方法 |
4.1.4 土体侧向位移作用下桩-土极限抗力计算方法 |
4.1.5 考虑时间效应水平附加应力计算方法 |
4.1.6 被动桩主动侧桩土相互作用计算模型 |
4.1.7 土压力法被动桩桩身响应求解 |
4.1.8 算例分析 |
4.2 非对称堆载作用下被动桩安全距离研究 |
4.2.1 堆载下影响距离范围分析 |
4.2.2 基于变形安全控制影响距离 |
4.3 非对称堆载对临近单桩影响现场试验 |
4.3.1 试验方案及监测元件布置 |
4.3.2 桩身和土体侧向变形实测结果分析 |
4.3.3 桩侧土压力实测结果分析 |
4.3.4 桩身应力实测结果分析 |
4.4 非对称堆载对临近排桩影响现场试验 |
4.4.1 试验概述及土层参数 |
4.4.2 静载试验结果分析 |
4.4.3 非对称堆载试验结果分析 |
4.4.4 侧向堆载下被动排桩桩身被动荷载影响因素分析 |
4.4.5 侧向堆载下被动桩负摩阻力影响分析 |
4.5 考虑时间效应非对称堆载对临近被动桩影响理论分析 |
4.6 本章小结 |
第五章 总结与展望 |
5.1 总结 |
5.2 本文主要创新性成果 |
5.3 展望 |
致谢 |
参考文献 |
作者简介 |
(3)削扩支盘抗拔桩受力特性试验测试及工程应用研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景与意义 |
1.2 桩基的应用历史 |
1.3 削扩支盘桩抗拔桩研究与应用现状 |
1.4 本文研究的内容 |
第二章 厦门英蓝国际金融中心项目工程背景 |
2.1 项目概况 |
2.2 工程地质和水文条件 |
2.3 地基基础方案分析与建议 |
2.4 工程设计基本情况 |
第三章 工程桩基设计前后的抗拔试验测试 |
3.1 单桩竖向抗拔静载试验方法 |
3.2 设计前期工程试验桩概况 |
3.3 设计桩型及相关参数 |
3.4 工程试验桩单桩竖向抗拔静载试验 |
第四章 灌注桩后注浆技术 |
4.1 后注浆技术概述 |
4.2 灌注桩后注浆装置 |
4.3 灌注桩后注浆机理 |
4.4 灌注桩后注浆设计及承载力分析 |
4.5 后注浆施工工艺 |
第五章 削扩支盘桩的技术特点 |
5.1 削扩支盘桩概述 |
5.2 削扩支盘桩的特点及使用范围 |
5.3 削扩支盘桩工艺原理 |
5.4 削扩支盘桩工艺流程及操作要点 |
5.5 削扩支盘桩的抗拔承载机理和承载力分析 |
第六章 后注浆方案及削扩支盘桩方案试验桩抗拔试验研究 |
6.1 试验桩的单桩竖向抗拔静载试验概况 |
6.2 削扩支盘桩方案的工程桩试验 |
第七章 结论与展望 |
7.1 主要结论 |
7.2 问题与展望 |
参考文献 |
致谢 |
攻读硕士学位期间参与的工程项目 |
(4)灌注桩后压浆技术注浆加固机理试验研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景与意义 |
1.2 灌注桩后压浆技术简介 |
1.2.1 灌注桩后压浆技术的分类 |
1.2.2 后压浆技术在国外的发展 |
1.2.3 后压浆技术在国内的发展 |
1.3 压浆加固机理的研究现状 |
1.3.1 桩端压浆加固机理 |
1.3.2 桩侧压浆加固机理 |
1.4 本文研究内容 |
1.5 本文技术路线 |
第二章 桩端压浆现场试验 |
2.1 工程概况 |
2.1.1 工程地质条件 |
2.1.2 试桩概况 |
2.2 试验方法 |
2.3 试验结果分析 |
2.3.1 桩端压浆加固效果 |
2.3.2 桩端压浆加固机理分析 |
2.4 压浆效果钻孔取芯检测 |
2.4.1 取芯施工 |
2.4.2 取芯结果分析 |
2.5 本章小结 |
第三章 桩侧压浆模型试验 |
3.1 试验概况 |
3.1.1 试验目的 |
3.1.2 试验内容 |
3.1.3 试验装置和试验材料 |
3.2 试验过程 |
3.2.1 地基土的填筑与预压 |
3.2.2 静压沉桩 |
3.2.3 试桩压浆 |
3.2.4 竖向及水平静载试验 |
3.2.5 开挖试桩浆液结石体 |
3.3 试验结果分析 |
3.3.1 竖向加载结果 |
3.3.2 水平加载结果 |
3.3.3 桩侧压浆的浆液扩散机制分析 |
3.3.4 桩侧压浆桩承载机制分析 |
3.4 本章小结 |
第四章 结石体试块海水侵蚀试验 |
4.1 试验概况 |
4.1.1 试验目的 |
4.1.2 试验方案 |
4.2 试验过程 |
4.2.1 试样的制作与养护 |
4.2.2 微型贯入试验(MCPT) |
4.2.3 XRD衍射分析 |
4.2.4 电镜扫描 |
4.3 试验结果分析 |
4.3.1 微型贯入试验结果分析 |
4.3.2 海水侵蚀原理 |
4.3.3 XRD衍射分析结果 |
4.3.4 电镜扫描结果 |
4.4 本章小结 |
第五章 后压浆施工参数统计分析 |
5.1 后压浆施工控制参数 |
5.1.1 压浆量 |
5.1.2 压浆压力 |
5.2 数据来源及分析工具 |
5.2.1 施工数据简介 |
5.2.2 SPSS简介 |
5.3 数据分析 |
5.3.1 压浆压力 |
5.3.2 压浆量 |
5.4 本章小结 |
第六章 结论与展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
致谢 |
作者简介 |
(5)大直径后压浆桩承载力提高机理及基于沉降控制的设计方法研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 国内外研究现状 |
1.2.1 桩基后压浆工艺的研究现状 |
1.2.2 后压浆提高桩基承载力机理的研究现状 |
1.2.3 后压浆桩承载性状的研究现状 |
1.2.4 沉降控制的桩基设计研究现状 |
1.3 目前研究存在的问题 |
1.4 本文的研究内容与技术路线 |
第二章 后压浆桩承载力增强作用机理研究 |
2.1 引言 |
2.2 后压浆对桩端阻力的增强作用研究 |
2.2.1 桩端压浆提高承载力的作用 |
2.2.2 压浆对桩端阻力的提高 |
2.2.3 压浆形成的桩端扩大头 |
2.3 后压浆对桩侧摩阻力的增强作用研究 |
2.3.1 桩侧压浆提高承载力的作用 |
2.3.2 浆液上返高度理论推导 |
2.3.3 模型参数的确定及成层土中浆液上返的迭代计算 |
2.3.4 计算实例 |
2.4 后压浆对桩基阻力的相互作用影响研究 |
2.4.1 后压浆对桩基阻力相互影响的试验分析 |
2.4.2 后压浆对桩基阻力相互作用的机理分析 |
2.5 工程实例验证与分析 |
2.5.1 后压浆对桩基阻力的增强作用 |
2.5.2 后压浆的预压作用 |
2.6 本章小结 |
第三章 后压浆单桩承载性状模型试验研究 |
3.1 引言 |
3.2 单桩模型试验方案设计 |
3.2.1 模型试验设计原则 |
3.2.2 试验方案 |
3.2.3 试验模型制备 |
3.2.4 沉桩试验及压浆装置 |
3.2.5 加载方法和数据采集 |
3.3 试验过程及现象分析 |
3.3.1 反压荷载下土压力变化情况 |
3.3.2 沉桩试验结果分析 |
3.3.3 压浆试验分析 |
3.4 单桩竖向承载力模型试验结果分析 |
3.4.1 荷载-沉降关系 |
3.4.2 桩身轴力传递特性 |
3.4.3 桩侧摩阻力发挥特性 |
3.4.4 桩端阻力发挥特性 |
3.5 单桩水平承载力模型试验结果分析 |
3.5.1 水平力与位移及梯度关系分析 |
3.5.2 桩周土体m值曲线 |
3.5.3 桩身弯矩分布特征 |
3.5.4 桩身侧向位移曲线 |
3.5.5 桩侧土压力变化情况 |
3.6 后压浆单桩浆液分布及强度分析 |
3.6.1 单桩开挖后浆液渗扩变化情况 |
3.6.2 浆液加固体与桩体间的结合强度 |
3.7 本章小结 |
第四章 大直径后压浆灌注桩承载性状现场试验研究 |
4.1 引言 |
4.2 超厚细砂地层后压浆灌注桩承载性状的现场试验分析 |
4.2.1 场地地质与试桩概况 |
4.2.2 组合后压浆施工工艺 |
4.2.3 试桩静载试验 |
4.2.4 试桩静载结果分析 |
4.2.5 后压浆加固效果的检测 |
4.3 珊瑚礁灰岩地层后压浆灌注桩承载性状的现场试验分析 |
4.3.1 场地地质与试桩概况 |
4.3.2 珊瑚礁灰岩地层后压浆施工工艺 |
4.3.3 试桩静载试验 |
4.3.4 试桩静载结果分析 |
4.4 后压浆灌注桩长期承载性状的现场试验分析 |
4.4.1 场地地质与试桩概况 |
4.4.2 试桩长期静载试验结果分析 |
4.4.3 桩基阻力的变化规律 |
4.5 本章小结 |
第五章 大直径后压浆桩承载力及压浆参数统计分析 |
5.1 引言 |
5.2 大直径后压浆桩与未压浆桩对比统计分析 |
5.2.1 总体分析 |
5.2.2 后压浆桩与未压浆桩沉降对比分析 |
5.3 大直径后压浆桩承载力计算分析 |
5.3.1 统计分析方法 |
5.3.2 后压浆桩承载力计算公式的评价 |
5.3.3 后压浆单桩极限承载力总提高系数取值分析 |
5.3.4 后压浆桩侧摩阻力及端阻力增强系数取值分析 |
5.4 大直径后压浆桩压浆设计参数分析 |
5.4.1 压浆量设计 |
5.4.2 压浆压力设计 |
5.5 本章小结 |
第六章 大直径后压浆桩沉降计算方法研究 |
6.1 引言 |
6.2 大直径后压浆桩沉降计算经验预估方法 |
6.2.1 已有的后压浆桩沉降计算方法 |
6.2.2 后压浆沉降影响系数取值分析 |
6.2.3 计算实例 |
6.3 基于荷载传递法的后压浆桩沉降计算方法 |
6.3.1 荷载传递模型的建立 |
6.3.2 后压浆桩荷载传递分析的迭代方法 |
6.3.3 模型参数取值 |
6.3.4 工程实例分析 |
6.3.5 大直径后压浆桩承载性状分析 |
6.4 本章小结 |
第七章 结论与展望 |
7.1 主要结论 |
7.2 本文的主要创新点 |
7.3 建议与展望 |
致谢 |
参考文献 |
附录A 139 个工程716 根压浆对比桩静载试验资料 |
附录B 后压浆桩工程的压浆实测数据资料 |
附录C 乐清湾1号桥部分墩位压浆过程压力情况 |
作者简介 |
(6)钻孔灌注桩后压浆技术在武汉地区的应用(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 课题研究的背景 |
1.2 国内外研究概况及发展历程 |
1.2.1 后压浆技术国外发展概况 |
1.2.2 后压浆技术国内发展概况 |
1.3 课题研究的目的、意义和方法 |
1.4 课题研究的内容 |
1.5 本章小结 |
第二章 武汉地区工程地质概况 |
2.1 自然地理及地质概况 |
2.2 地基地质概况 |
2.2.1 地质构造概况 |
2.2.2 水文地质概况 |
2.2.3 工程地质概况 |
2.3 工程地质条件评价 |
2.3.1 工程稳定性、适宜性评价 |
2.3.2 地基均匀性评价 |
2.3.3 成桩可行性评价 |
2.3.4 不良地质作用及特殊地基工程问题评价 |
2.3.5 工程环境评价 |
2.4 本章小结 |
第三章 钻孔灌注桩后压浆技术的作用机理 |
3.1 钻孔灌注桩后压浆技术的概念与分类 |
3.2 钻孔灌注桩技术的缺陷与不足 |
3.3 钻孔灌注桩后压浆技术的作用与优点 |
3.4 钻孔灌注桩后压浆技术工程地质适用范围和领域应用范围 |
3.4.1 工程地质适用范围 |
3.4.2 工程建筑应用范围 |
3.5 钻孔灌注桩后压浆技术作用机理 |
3.5.1 物理作用机理 |
3.5.2 化学作用机理 |
3.6 本章小结 |
第四章 钻孔灌注桩后压浆技术的设计 |
4.1 后压浆技术工艺流程 |
4.1.1 后压浆施工机具以及人员组织 |
4.1.2 后压浆技术施工工艺 |
4.2 钻孔灌注桩后压浆技术设计理论 |
4.3 注浆参数的确定 |
4.3.1 注浆料 |
4.3.2 注浆时间 |
4.3.3 注浆压力的确定 |
4.3.4 注浆量的确定 |
4.3.5 浆液水灰比的确定 |
4.4 后压浆技术常遇到的问题及其处理方法 |
4.5 本章小结 |
第五章 钻孔灌注桩后压浆技术的工程应用 |
5.1 工程概况 |
5.2 工程地质条件与桩基础评价 |
5.2.1 工程地质条件 |
5.2.2 场地水文地质条件 |
5.2.3 桩基础评价 |
5.3 本工程设计要求与应用的参数 |
5.4 钻孔灌注桩后压浆试桩检测 |
5.5 钻孔灌注桩后压浆检测结果与分析 |
5.5.1 钻孔灌注桩后压浆检测结果 |
5.5.2 后压浆检测结果分析 |
5.6 本章小结 |
第六章 课题结论与展望 |
6.1 主要结论 |
6.2 课题建议与展望 |
6.2.1 课题建议 |
6.2.2 课题展望 |
参考文献 |
致谢 |
在读期间发表的学术论文及研究成果 |
(7)深厚软基超长钻孔灌注桩后压浆关键技术研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.3 本文的研究方法及主要工作 |
2 钻孔灌注桩后压浆注浆理论 |
2.1 钻孔灌注桩后压浆的概念及分类 |
2.1.1 钻孔灌注桩后压浆按注浆部位的分类 |
2.2 钻孔灌注桩后压浆的注浆理论 |
2.2.1 后压浆渗透注浆理论 |
2.2.2 后压浆压密注浆理论 |
2.2.3 后压浆劈裂注浆理论 |
2.3 本章小结 |
3 深厚软基超长钻孔灌注桩后压浆工艺控制技术研究 |
3.1 概述 |
3.2 钻孔灌注桩后压浆设计方法 |
3.2.1 钻孔灌注桩后压浆设计前准备 |
3.2.2 钻孔灌注桩后压浆的承载力设计 |
3.2.3 钻孔灌注桩后压浆浆液水灰比确定 |
3.2.4 后压浆顺序的确定 |
3.2.5 后压浆节奏的确定 |
3.2.6 后压浆压力的确定 |
3.2.7 后压浆量的确定 |
3.3 深厚软基超长钻孔灌注桩后压浆工艺控制成套技术 |
3.3.1 后压浆的技术原理 |
3.3.2 后压浆成桩及加固机理 |
3.3.3 后压浆桩应用范围 |
3.3.4 后压浆桩的施工设备及要点 |
3.3.5 后压浆桩注浆管的设置 |
3.3.6 后压浆桩施工工艺及要点 |
3.4 本章小结 |
4 深厚软基超长钻孔灌注桩后压浆现场试验研究 |
4.1 钻孔灌注桩后压浆现场静载荷试验 |
4.1.1 工程概况 |
4.1.2 地质条件 |
4.1.3 静载荷试验加载方式 |
4.1.4 试验数据监测方法 |
4.1.5 现场静载荷试验结果分析 |
4.2 钻孔灌注桩后压浆现场声波透射法测检测 |
4.2.1 钻孔灌注桩后压浆注浆前声波透射法检测 |
4.2.2 钻孔灌注桩后压浆注浆后声测检测 |
4.2.3 钻孔灌注桩后压浆注浆前后声测对比分析 |
4.3 本章小结 |
5 结论与展望 |
5.1 主要结论 |
5.2 研究展望 |
参考文献 |
致谢 |
作者简介及读研期间主要科研成果 |
(8)桥梁钻孔灌注桩后压浆技术应用研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 前言 |
1.2 本文研究背景与意义 |
1.3 研究现状 |
1.3.1 研究背景 |
1.3.2 国内外研究现状 |
1.4 研究内容及研究方法 |
第二章 公路桥梁钻孔灌注桩后压浆理论分析 |
2.1 后压浆技术主要概念 |
2.1.1 基本定义 |
2.1.2 后压浆技术分类 |
2.2 柱球扩张理论在后压浆技术中的应用 |
2.2.1 孔扩张理论 |
2.2.2 后压浆扩张规律分析 |
2.3 后压浆技术的作用机理 |
2.3.1 增加桩基持力层强度 |
2.3.2 提高桩端土体的摩阻力 |
2.3.3 增强桩侧摩阻力 |
2.3.4 改善荷载传递性能 |
2.4 后压浆注浆力学机理 |
2.4.1 物理力学机理 |
2.4.2 化学机理 |
2.5 后压浆对桩基承载力的影响 |
2.5.1 桩端持力层地质情况的影响 |
2.5.2 桩基自身条件的影响 |
2.5.3 压浆施工过程的影响 |
2.6 小结 |
第三章 公路桥梁钻孔灌注桩后压浆数值模拟分析 |
3.1 数值模拟软件的选择 |
3.2 数值计算技术 |
3.3 弹塑性矩阵推导 |
3.4 初始应力状态确定 |
3.4.1 理论基础 |
3.4.2 非线性方程组的求解 |
3.5 数值分析计算模型 |
3.5.1 桩身本构模型的选取 |
3.5.2 桩周持力层土体本构模型 |
3.5.3 桩基础与周围土体接触面单元分析 |
3.5.4 桩基与土体初始状态的确定 |
3.5.5 几何模型 |
3.5.6 模型建立及计算参数的选取 |
3.6 仿真计算分析 |
3.6.1 后压浆与常规钻孔灌注桩对比分析 |
3.6.2 参数分析 |
3.6.2.1 加载过程对桩周土体的影响分析 |
3.6.2.2 桩侧与桩端模量变化规律分析 |
3.6.2.3 注浆量及注浆体强度对桩基承载力的影响分析 |
3.6.3 数值分析主要结论 |
3.7 小结 |
第四章 公路桥梁后压浆钻孔灌注桩静载试验研究 |
4.1 试验概况 |
4.1.1 依托工程简介 |
4.1.2 地质条件 |
4.1.3 水文条件 |
4.1.4 试桩规划 |
4.1.5 试桩基本参数 |
4.2 试验研究主要目的 |
4.3 试验研究的主要内容 |
4.3.1 桩基顶沉降值 |
4.3.2 桩基承受的轴力 |
4.3.3 桩端阻力 |
4.3.4 桩侧摩阻力 |
4.4 加载与试验测试系统 |
4.4.1 试验量测系统 |
4.5 试验加载 |
4.5.1 单桩竖向极限承载力 |
4.5.2 桩身轴力、桩侧阻力及桩端阻力发挥性状 |
4.5.3 后压浆对灌注桩承载力影响分析 |
4.5.4 后压浆工艺桩剖析结果 |
4.5.5 数值成果对比分析 |
4.6 小结 |
第五章 主要结论与建议 |
5.1 主要结论 |
5.2 进一步研究的建议 |
参考文献 |
致谢 |
(9)中国桥梁工程学术研究综述·2014(论文提纲范文)
0 引言 |
1 桥梁工程建设成就及展望 (同济大学肖汝诚老师、郭瑞、姜洋提供原稿) |
1.1 建设成就 |
1.1.1 设计水平的提高 |
1.1.2 施工技术的发展 |
1.1.3 桥梁工程防灾和减灾技术的改进 |
1.2 展望 |
1.2.1 桥梁全寿命与结构耐久性设计 |
1.2.2 高性能材料研发及其结构体系的创新[3] |
1.2.3 超深水基础建造技术 |
1.2.4 创新施工装备和监测设备的研发 |
1.2.5 桥梁设计理论和技术的发展 |
2 高性能材料 |
2.1 超高性能混凝土 (湖南大学邵旭东老师、张哲博士生提供原稿) |
2.1.1 UHPC桥梁工程应用现状 |
2.1.2 UHPC在大跨桥梁上的应用展望 |
2.1.3 小结 |
2.2 纤维复合材料 (江苏大学刘荣桂老师提供原稿) |
2.2.1 CFRP材料在预应力大跨桥梁结构中的应用 |
2.2.1. 1 CFRP索 (筋) 锚具系统 |
2.2.1. 2 CFRP材料作为受力筋 |
2.2.1. 3 CFRP材料作为桥梁索结构 |
2.2.2 CFRP材料在桥梁结构补强加固中的应用 |
2.2.3 基于CFRP材料自感知特性的结构体系研发及应用现状 |
2.2.4 CFRP材料现代预应力结构应用研究展望 |
2.3 智能材料与纳米材料[49] |
3 作用及分析 |
3.1 汽车作用 (合肥工业大学任伟新老师、中南大学赵少杰博士生提供原稿) |
3.1.1 研究现状 |
3.1.1. 1 研究方法及阶段 |
3.1.1. 2 第1类模型 |
3.1.1. 3 第2类模型 |
3.1.2 各国规范的相关车辆荷载模型 |
3.1.3 研究重点和难点 |
3.1.4 研究发展方向 |
3.1.4. 1 基于WIM系统和实时交通要素监测的车辆数据调查统计 |
3.1.4. 2 基于多参数随机模拟技术的车辆荷载流模拟 |
3.1.4. 3 基于交通流的桥梁结构效应及安全评估技术 |
3.1.5 小结 |
3.2 温度作用 (东南大学叶见曙老师提供原稿) |
3.2.1 混凝土箱梁的温度场和梯度温度 |
3.2.1. 1 温度场 |
3.2.1. 2 梯度温度 |
(1) 沿箱梁高度的梯度温度分布形式 |
(2) 最大温差值 |
(3) 梯度温度的影响因素 |
3.2.2 混凝土箱梁温差代表值 |
3.2.3 混凝土箱梁温度场及温度应力的数值分析 |
3.2.4 小结 |
3.3 分析理论方法 (长安大学梁鹏老师提供原稿) |
3.3.1 单梁、空间梁格、空间网格建模 |
3.3.2 非线性分析 |
3.3.3 多尺度建模 |
4 桥梁设计理论与方法 (长安大学罗晓瑜、王春生老师, 同济大学陈艾荣老师提供原稿) |
4.1 桥梁及典型构件寿命的给定 |
4.1.1 桥梁结构寿命给定 |
4.1.2 国外桥梁及构件使用寿命 |
4.2 桥梁性能设计 |
4.2.1 安全性能设计 |
4.2.2 使用性能设计 |
4.2.3 耐久性能设计 |
4.2.4 疲劳性能设计 |
4.2.5 景观性能设计 |
4.2.6 生态性能设计 |
4.2.7 基于性能的桥梁结构设计方法 |
4.3 寿命周期管养策略及设计 |
4.4 寿命周期成本分析和决策 |
4.5 桥梁工程风险评估和决策 |
4.6 存在问题与建议 |
5 钢桥及组合结构桥梁 |
5.1 钢桥抗疲劳设计与维护技术 (长安大学王春生老师提供原稿) |
5.2 钢-混凝土组合桥梁 (中南大学丁发兴老师, 清华大学樊健生老师, 同济大学刘玉擎、苏庆田老师提供原稿) |
5.2.1 研究现状 |
5.2.1. 1 静力性能 |
5.2.1. 1. 1 承载力 |
(1) 钢-混凝土组合梁 |
(2) 钢管混凝土柱 |
(3) 钢管混凝土拱 |
5.2.1. 1. 2 刚度 |
5.2.1. 2 动力性能 |
5.2.1. 2. 1 自振特性 |
(1) 钢-混凝土组合梁桥 |
(2) 钢管混凝土墩桥 |
(3) 钢管混凝土拱桥 |
5.2.1. 2. 2 车致振动 |
5.2.1. 2. 3 风致振动 |
5.2.1. 2. 4 地震响应 |
(1) 钢-混凝土组合梁抗震性能 |
(2) 钢管混凝土柱抗震性能 |
(3) 钢管混凝土拱桥抗震性能 |
5.2.1. 3 经时行为 |
5.2.1. 3. 1 疲劳性能 |
(1) 钢-混凝土组合梁 |
(2) 钢管混凝土柱 |
(3) 钢管混凝土节点 |
5.2.1. 3. 2 收缩徐变性能 |
(1) 钢-混凝土组合梁 |
(2) 钢管混凝土柱 |
(3) 钢管混凝土拱桥 |
5.2.1. 3. 3 耐久性能 |
5.2.1. 4 状态评估 |
5.2.2 发展前景 |
(1) 新型钢-混凝土组合桥梁结构体系研究与应用 |
(2) 钢-混凝土组合桥梁结构体系经时行为研究 |
(3) 钢-混凝土组合桥梁结构体系动力学研究 |
(4) 钢-混凝土组合桥梁结构体系服役状态评估 |
6 桥梁防灾减灾 |
6.1 抗震 (同济大学李建中老师、北京工业大学韩强老师提供原稿) |
6.1.1 桥梁混凝土材料损伤本构模型 |
6.1.2 桥梁主要构件的抗震性能及分析模型 |
6.1.2. 1 RC桥墩抗震性能及分析模型 |
6.1.2. 2 桥梁剪力键抗震性能及分析模型 |
6.1.3 桥梁结构抗震分析理论和设计方法 |
6.1.3. 1 桥梁结构抗震设计理论和方法 |
6.1.3. 2 桥梁结构多维地震动的空间差动效应 |
6.1.3. 3 桥梁防落梁装置 |
6.1.3. 4 桥梁地震碰撞反应 |
6.1.3. 5 结构-介质相互作用 |
6.1.3. 5. 1 土-桥台-桥梁结构相互作用 |
6.1.3. 5. 2 近海桥梁-水相互作用 |
6.1.4 桥梁减隔震技术 |
6.1.5 桥梁结构易损性分析 |
6.1.6 基于纤维增强材料的桥墩抗震加固技术 |
6.1.7 存在的问题分析 |
6.2 抗风 (长安大学李加武老师、西南交通大学李永乐老师提供原稿) |
6.2.1近地风特性研究 |
6.2.1. 1 平坦地形风特性实验室模拟 |
6.2.1. 2 特殊地形风特性 |
(1) 现场实测 |
(2) 风洞试验 |
(3) CFD方法 |
6.2.2 风致振动及风洞试验 |
(1) 颤振 |
(2) 涡激振动 |
(3) 抖振 |
(4) 驰振 |
(5) 斜拉索风雨振 |
6.2.3 临时结构抗风 |
(1) 设计风速 |
(2) 风力系数 |
6.2.4 大跨桥风致振动的计算分析 |
6.2.5 CFD分析 |
6.3 抗火抗爆 (长安大学张岗老师提供原稿) |
6.3.1 研究现状与目标 |
6.3.2 桥梁火灾风险评价 |
6.3.3 适用于桥梁结构高性能材料的高温特性 |
6.3.4 桥梁结构的火荷载特性 |
6.3.5 桥梁结构的火灾作用效应 |
6.3.6 火灾后桥梁结构的损伤评价 |
6.4 船撞 (长安大学姜华老师提供原稿) |
6.4.1 船撞桥风险分析 |
6.4.2 船撞桥数值模拟及碰撞试验校核 |
6.4.3 撞击力公式及船撞桥简化模型 |
6.4.4 桥梁防撞设施研究 |
6.5 多场、多灾害耦合分析 |
6.5.1 风-车-桥系统 (长安大学韩万水老师提供原稿) |
6.5.1. 1 研究回顾 |
6.5.1. 2 未来发展方向 |
6.5.1. 2. 1 风-随机车流-桥梁系统的气动干扰效应 |
6.5.1. 2. 2 风-随机车流-桥梁系统的精细化分析 |
(1) 风环境下汽车-桥梁系统耦合关系的建立和耦合机理研究 |
(2) 钢桁加劲梁断面的风-汽车-桥梁分析系统建立 |
(3) 风-随机车流-桥梁分析系统集成、动态可视化及软件实现 |
6.5.1. 2. 3 风-随机车流-桥梁系统的评价准则 |
6.5.2 多场、多灾害耦合分析与设计 (长安大学梁鹏老师提供原稿) |
7 基础工程 (湖南大学赵明华老师、东南大学穆保岗老师提供原稿) |
7.1 桥梁桩基设计计算理论 |
7.1.1 竖向荷载下桥梁桩基设计计算 |
7.1.2 水平荷载下桥梁桩基设计计算 |
7.1.3 组合荷载下桥梁桩基设计计算 |
7.2 特殊条件下桥梁桩基受力研究 |
7.2.1 软土地段桥梁桩基受力研究 |
7.2.2 岩溶及采空区桥梁桩基受力研究 |
7.2.3 陡坡地段桥梁桩基受力研究 |
7.2.4 桥梁桩基动力分析 |
7.2.5 高桥墩桩基屈曲分析 |
7.3 桥梁桩基施工技术 |
7.3.1 特殊混凝土材料桩 |
7.3.2 大型钢管桩 |
7.3.3 大型钢围堰与桩基复合基础 |
7.3.4 钻孔灌注桩后压浆技术 |
7.3.5 大吨位桥梁桩基静载试验技术 |
7.3.6 偏斜缺陷桩 |
7.4 深水桥梁桩基的发展动向 |
8 监测、评估及加固 |
8.1 桥梁健康监测 (同济大学孙利民老师提供原稿) |
8.1.1 SHMS的设计 |
8.1.2 数据获取 |
8.1.2. 1 传感技术的发展 |
8.1.2. 2 传输技术的发展 |
8.1.3 数据管理 |
8.1.4 数据分析 |
8.1.4. 1 信号处理 |
8.1.4. 2 荷载及环境作用监测 |
8.1.4. 3 系统建模 |
8.1.5 结构评估与预警 |
8.1.6 结果可视化显示 |
8.1.7 维修养护决策 |
8.1.8 标准规范 |
8.1.9 桥梁SHMS的应用 |
8.1.1 0 存在问题与建议 |
8.2 服役桥梁可靠性评估 (长沙理工大学张建仁、王磊老师, 长安大学王春生老师提供原稿) |
8.2.1 服役桥梁抗力衰减 |
8.2.2 服役桥梁可靠性评估理论与方法 |
8.2.3 混凝土桥梁疲劳评估 |
8.3 桥梁加固与改造 |
8.3.1 混凝土桥梁组合加固新技术 (长安大学王春生老师提供原稿) |
8.3.2 桥梁拓宽关键技术 (东南大学吴文清老师提供原稿) |
8.3.2. 1 桥梁拓宽基本方案研究 |
8.3.2. 1. 1 拓宽总体方案分析 |
8.3.2. 1. 2 新旧桥上下部结构横向连接方案 |
8.3.2. 2 横向拼接缝的构造设计 |
8.3.2. 3 桥梁拓宽设计标准研究 |
8.3.2. 4 新桥基础沉降变形对结构设计的影响 |
8.3.2. 4. 1 工后沉降差的定义 |
8.3.2. 4. 2 梁格法有限元模型中沉降变形施加方法 |
8.3.2. 5 混凝土收缩徐变对新旧桥拼接时机的影响 |
8.3.2. 6 错孔布置连续箱梁桥的横向拓宽技术 |
8.3.2. 7 三向预应力箱梁横向拓宽技术研究 |
9 其他 |
9.1 无缝桥 (福州大学陈宝春老师提供原稿) |
9.1.1 研究概况 |
9.1.2 发展方向 |
9.2 桥面铺装 (东南大学钱振东老师提供原稿) |
9.2.1 钢桥面铺装的结构力学分析方法 |
9.2.2 钢桥面铺装材料 |
9.2.2. 1 铺装用典型沥青混凝土材料 |
9.2.2. 2 防水粘结材料 |
(1) 沥青类防水粘结材料 |
(2) 反应性树脂类防水粘结材料 |
9.2.2. 3 钢桥面铺装材料性能 |
(1) 级配设计 |
(2) 路用性能 |
(3) 疲劳断裂特性 |
9.2.3 钢桥面铺装结构 |
9.2.3. 1 典型的钢桥面铺装结构 |
9.2.3. 2 钢桥面铺装复合体系的疲劳特性 |
9.2.4 钢桥面铺装的养护维修技术 |
9.2.5 研究发展方向展望 |
(1) 钢桥面铺装结构和材料的改进与研发 |
(2) 基于车-路-桥协同作用的钢桥面铺装体系设计方法 |
(3) 施工环境下钢桥面铺装材料及结构的热、力学效应 |
(4) 钢桥面铺装养护修复技术的完善 |
9.3 斜拉桥施工过程力学特性及施工控制 (西南交通大学张清华老师提供原稿) |
9.3.1 施工过程可靠度研究 |
9.3.1. 1 施工期材料性质与构件抗力 |
9.3.1. 2 施工期作用 (荷载) 调查及统计分析 |
9.3.1. 3 施工期结构可靠度理论研究 |
9.3.2 施工控制理论与方法研究 |
9.3.2. 1 全过程自适应施工控制理论及控制系统 |
9.3.2. 2 全过程控制条件下的误差传播及调控对策 |
9.4 计算机技术对桥梁工程的冲击 (长安大学梁鹏老师提供原稿) |
9.4.1 高性能计算 |
9.4.1. 1 高性能计算的意义 |
9.4.1. 2 高性能计算的实现及算法 |
9.4.1. 3 抗震分析 |
9.4.1. 4 计算风工程 |
9.4.1. 5 船撞仿真 |
9.4.1. 6 高性能计算中的重要问题 |
9.4.2 结构试验 |
9.4.3 健康监测 |
9.4.4 建筑信息模型 |
9.4.5 虚拟现实技术 |
9.4.6 知识经济时代的桥梁工程建设特征[1] |
1 0 结语 |
(10)典型黄土地区桥梁桩端后压浆钻孔灌注桩受力特性研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 本文研究背景与意义 |
1.2 钻孔灌注桩的发展与存在问题 |
1.2.1 钻孔灌注桩的发展史 |
1.2.2 钻孔灌注桩存在的问题 |
1.3 单桩竖向承载力与沉降研究 |
1.3.1 桩基承载力的研究 |
1.3.2 桩基沉降的研究 |
1.4 后压浆桩基国内外研究概况 |
1.4.1 国外研究现状及分析 |
1.4.2 国内研究现状及分析 |
1.4.3 问题的提出 |
1.5 研究内容与技术路线 |
1.5.1 主要研究内容 |
1.5.2 技术路线 |
第二章 桩端后压浆桩基作用机理及承载力影响分析 |
2.1 桩端后压浆简介 |
2.2 传统桩基的不足 |
2.3 桩端后压浆施工工艺 |
2.3.1 压力注浆时间 |
2.3.2 压力注浆量 |
2.3.3 注浆压力 |
2.4 桩端后压浆技术的优点 |
2.5 土层压浆机理分析 |
2.5.1 压密作用 |
2.5.2 劈裂作用 |
2.5.3 渗透作用 |
2.6 后压浆对桩承载力提高机理 |
2.6.1 增大持力层强度 |
2.6.2 提高桩端阻力 |
2.6.3 增强侧摩阻力 |
2.6.4 改善荷载传递性能 |
2.7 后压浆对桩基承载力的影响 |
2.7.1 桩端土影响 |
2.7.2 桩基自身影响 |
2.7.3 注浆施工影响 |
2.8 小结 |
第三章 桩端后压浆桩基荷载传递规律 |
3.1 桩端后压浆浆液对土体的影响 |
3.1.1 Vesic 球形孔扩张理论 |
3.1.2 桩端后压浆浆液对土体的影响 |
3.2 钻孔灌注桩的受力机理 |
3.2.1 钻孔灌注桩的荷载传递机理 |
3.2.2 荷载传递的基本微分方程 |
3.3 荷载传递主要影响因素分析 |
3.3.1 桩端土与桩侧土刚度比 |
3.3.2 桩长径比 |
3.3.3 注浆体直径与桩径之比 |
3.3.4 注浆体高度与注浆体直径比 |
3.4 后压浆桩基承载力 |
3.4.1 承载力的计算 |
3.4.2 承载力计算的影响因素 |
3.4.3 典型黄土地区后压浆桩基承载力计算 |
3.5 后压浆桩基沉降计算 |
3.6 小结 |
第四章 桩端后压浆桩基现场试验方案 |
4.1 概况 |
4.1.1 依托工程简介 |
4.1.2 地质条件 |
4.1.3 水文条件 |
4.1.4 试桩规划 |
4.1.5 试桩基本参数 |
4.2 试验研究目的 |
4.3 试验研究内容 |
4.3.1 桩顶沉降 |
4.3.2 桩身轴力 |
4.3.3 桩端阻力 |
4.3.4 桩侧摩阻力 |
4.4 加载与试验测试系统 |
4.4.1 试验量测系统 |
4.4.2 加载系统 |
4.5 试验加载 |
4.6 桩基浸水试验 |
4.6.1 浸水区域 |
4.6.2 注水孔参数 |
4.6.3 浸水保湿措施 |
4.7 小结 |
第五章 桩基现场试验结果分析 |
5.1 后压浆与常规桩承载特性分析 |
5.1.1 承载力分析 |
5.1.2 桩身轴力性状 |
5.1.3 桩侧阻力性状 |
5.1.4 桩端阻力性状 |
5.2 后压浆增强系数 |
5.3 浸水后桩基承载性能影响分析 |
5.3.1 承载性能影响 |
5.3.2 桩身轴力 |
5.3.3 桩端阻力 |
5.3.4 桩侧摩阻力 |
5.4 小结 |
第六章 桩端后压浆桩基承载特性数值分析 |
6.1 仿真分析软件的选择 |
6.2 数值计算技术 |
6.2.1 弹塑性矩阵推导 |
6.2.2 初始应力状态确定 |
6.2.3 理论基础 |
6.2.4 求解非线性方程组 |
6.3 数值分析计算模型 |
6.3.1 选取桩身本构模型 |
6.3.2 桩周土本构模型 |
6.3.3 桩土接触面单元分析 |
6.3.4 边界条件 |
6.3.5 初始状态 |
6.3.6 几何模型 |
6.4 计算参数 |
6.5 有限元计算结果与分析 |
6.5.1 未压浆桩基模拟分析 |
6.5.2 桩端、桩侧压浆模拟分析 |
6.5.3 提高桩端土模量模拟分析 |
6.5.4 桩端浆液上升的沉降量分析 |
6.6 小结 |
主要结论与建议 |
主要结论 |
创新点 |
进一步研究的建议 |
参考文献 |
攻读博士学位期间取得的学术成果 |
一、发表论文 |
二、获得专利 |
三、获奖情况 |
致谢 |
四、灌注桩后压浆技术应用领域的拓展与施工实践(论文参考文献)
- [1]钻孔灌注桩后压浆技术的设计与施工分析[J]. 赵杰,付玲玲,樊雷. 低碳世界, 2021(10)
- [2]滨海吹填围垦区堆载作用下桩基承载特性研究[D]. 邓会元. 东南大学, 2021
- [3]削扩支盘抗拔桩受力特性试验测试及工程应用研究[D]. 李千. 厦门大学, 2019(02)
- [4]灌注桩后压浆技术注浆加固机理试验研究[D]. 陈雪映. 东南大学, 2019(05)
- [5]大直径后压浆桩承载力提高机理及基于沉降控制的设计方法研究[D]. 万志辉. 东南大学, 2019(05)
- [6]钻孔灌注桩后压浆技术在武汉地区的应用[D]. 靳皓宇. 浙江海洋大学, 2017(07)
- [7]深厚软基超长钻孔灌注桩后压浆关键技术研究[D]. 乔文开. 安徽理工大学, 2016(08)
- [8]桥梁钻孔灌注桩后压浆技术应用研究[D]. 刘建梅. 长安大学, 2014(04)
- [9]中国桥梁工程学术研究综述·2014[J]. 《中国公路学报》编辑部. 中国公路学报, 2014(05)
- [10]典型黄土地区桥梁桩端后压浆钻孔灌注桩受力特性研究[D]. 康琦. 长安大学, 2014(12)