一、数列极限概念教学的层次性(论文文献综述)
姜绍蕊[1](2021)在《基于APOS理论的指数函数概念教学研究》文中提出数学概念往往是学生学习数学的基础,同时是学生数学思维的核心,学生对数学概念的认识与理解是学生运用数学知识认识数学世界、现实世界以及解决问题的关键。指数函数概念抽象于大量现实背景,符合数学学习贴近现实生活的教育理念。新课程改革,指数函数不再是第一个学习的初等函数,幂函数的学习为指数函数的研究提供了方法和思路,指数函数内容的学习又为后续数学内容的学习打下坚实的基础,尤其是指数函数与对数函数互为反函数这一性质可为高一学生研究对数函数的性质创造攻克难关的有力武器。因此,指数函数概念教学具有承接性,是整个函数部分学习的重点。然而,由于个体差异性,每一个学生对于指数函数的理解不尽相同,并且刚刚步入高一的学生思维发展水平也是有局限性的,有层次的,处于各个水平阶段的学生所面临的问题各不相同,在这样背景之下,划分学生对指数函数概念理解水平,并且分析出每一阶段学生的难点,进而因材施教是极有必要的。最终确立研究问题为:(1)基于APOS理论研究高一学生对指数函数理解与掌握的情况如何?(2)高一学生指数函数理解常见的错误都有哪些?原因是什么?(3)教师在进行指数函数概念教学时应该如何做才能解决学生存在的问题?有什么好的建议?为了解决上述研究问题,编制指数函数测试卷,在两所高中选择部分高一学生作为研究对象进行测试,按照APOS理论下指数函数阶段划分标准进行打分,整理分析数据结果,对具有多年教学经验的教师以及对应各阶段具有代表性的学生进行访谈。最终得到如下结论:(1)APOS理论下高一学生指数函数的各阶段的学习具有不均衡性、连续性;(2)APOS理论下高一学生在指数函数的各阶段学习中存在的问题有:(1)操作阶段:表征能力不强容易出现信息的遗漏,解决实际问题不关心定义域,作图习惯不佳;(2)过程阶段:对指数函数定义缺乏本质的认识,缺乏底数待定分类讨论的意识;(3)对象阶段:不会求指数函数的定义域、值域;审题识图能力尚待提高;(4)图式阶段:应用指数函数模型解决实际问题比较困难;解题思路不够明确、规范,反思总结能力尚待提高。造成以上各阶段指数函数学习困难的原因有:(1)操作阶段:指数幂及其运算理解有问题,缺乏大量实际问题操练,书写画图不规范;(2)指数函数定义识记过于形式化,指数函数图象性质理解不到位;(3)复合、分段函数接触较少,数学思想方法尚待提高;(4)不理解指数函数模型所代表的实际意义,不能有效构建指数函数知识网络。基于以上研究结论,提出以下教学建议:(1)加强与现实模型联系,了解指数函数背景;(2)重视指数函数定义形式,进行指数函数变式训练;(3)适当利用信息技术,直观感知指数函数图象变化;(4)多次反复渗透思想方法,重点掌握数形结合、分类讨论;(5)提高归纳总结能力,构建指数函数知识网络;(6)“具体化”指数函数研究思路,规范解题程序;(7)实现指数函数各阶段的分层教学。
罗瑞[2](2021)在《小学数学教师研读教材的实践研究 ——以Z名师工作室为例》文中进行了进一步梳理研读教材既是新课改的要求,也是教师专业化发展的要求,还是教师进行深度课堂教学的基础和前提,是备好课、上好课的核心环节。教师研读教材主要是对教材知识点进行钻研与表达,本研究为深入地剖析这一教学过程,将其分为两个阶段:对教材进行内化的“研”与外化的“读”,但其实“研”与“读”这两个过程是相辅相成的,“研”是“读”的基础,“读”是“研”的升华,二者相统一,即进行教材文本研读和课堂实践研读。本研究以KM市PL区Z名师工作室作为研究对象。主要研究四个方面的问题:第一,“数与代数”模块在小学数学教材中的编排与呈现。第二,小学数学教师研读教材的过程与方法。第三,小学数学教师在具体执教课题中如何研读教材。第四,多轮研读教材教学设计与实践的微循环过程对工作室、教师、学生产生的影响。综合运用文献法、访谈法、观察法以及实物分析法等研究方法,从每一次执教课题选定后进行的第一轮研读,到“课堂教学——干预——反思——修正”过程中的全员集体评课、研讨,从而为执教者提出下一轮的研读建议等一系列活动,研究者一直参与到此工作室对该课题的研究中。基于此研究,得出以下结论:第一,“数与代数”在四大领域中单元数和课时数占比都是最大,且“数的认识”和“数的运算”占比又高于其他部分,每部分都呈现螺旋式的编排,小学阶段深研此模块教材内容具有重要意义。第二,小学数学教师研读教材的过程与方法包括三原则、四愿景、四方法、四方式以及五步骤。(1)三条原则:注重间接经验与直接经验相结合、理论与实践相结合、继承与创新相结合的原则。(2)四个愿景:致力于完成学科教学任务、打造高效课堂;致力于全面、深入地把握教材文本传递的作用;致力于推进素质教育的实施、更好地服务学生;致力于提升教师专业素养、促进其职业发展。(3)四种方法:整体系统研读法、深度追问研读法、横纵对比研读法以及移情理解研读法。(4)四种方式:自我研读、交流研读、合作研读、指导研读。(5)五个步骤:以课标为基本依据,明晰课程总目标与学段目标的要求;“初研”教材整体结构;“再研”教材重点、难点和关键;“细研”主题图、例题和习题;“深研”教材编写意图。第三,“数与代数”模块五个研读课例从“研”到“读”的全过程。研读课例分析中由“研”到“读”四转换:教材文本转换为问题框架、问题框架转换为外部问题、外部问题转换为教学策略以及教学策略转换为教学活动。四环节:研、议、思、写。第四,此课题的开展过程对教师的影响。提升了教师研读教材的能力并且多轮微循环的研讨改进过程增进了教师间的沟通、交流以及合作的能力。对学生的影响。增强了学生对教学内容理解的深度,进而实现深度学习的目标。基于研究结论的启示:工作室课题的开展对提升教师研读水平具有重要意义,制度与策略是改善研读效果的重要基础,应持续、深入地进行研读教材实践研究以及课例开发。
王改珍[3](2021)在《职前数学教师专业知识结构及水平的实证研究》文中研究说明随着教师专业发展成为教师教育领域的研究热点,各国从对教师“量”的需求逐渐转变到对教师“质”的需求,其中一个核心的研究内容便是教师知识。教师知识是教师专业素质的重要组成部分,也是影响教师教学水平的重要因素。教师教育的质量决定着教育的质量,职前教师教育的质量又是确保教师教育质量的基础环节。职前教师需要具备怎样的专业知识结构和水平,才能满足高质量教育的人才需求,受到教育研究者和教育工作者的广泛关注。教师专业知识是教师专业发展的基础,对职前教师专业知识的研究可以反映教师专业知识的最初状态。本研究聚焦于职前数学教师的专业知识结构及水平,分为三个子问题:一、职前数学教师需要怎样的专业知识结构?通过访谈和调查,从一线教师的视角给出对合格数学教师需要具备的专业知识结构的看法,并将其作为职前数学教师专业知识结构的参考标准。该知识结构是教师主观层面的认识,也可称为教师期望的专业知识结构。二、职前数学教师专业知识的掌握水平如何?通过测试了解职前数学教师专业知识的现状,进而得出实际的专业知识结构,并利用水平划分描述职前数学教师专业知识的掌握程度。三、职前数学教师实际的专业知识结构与一线教师期望的专业知识结构是否一致?通过对比,探讨职前数学教师专业知识结构的合理性,进而明确职前数学教师未来的努力方向。本研究采用量化研究与质化研究相结合的方法,以量化研究为主,质化研究为辅。子问题一通过调查教师视角下各类专业知识的重要程度来了解合格数学教师需要的各类专业知识的权重情况。首先通过文献梳理和访谈构建出数学教师的专业知识框架,并以此编制调查问卷;然后对一线教师展开问卷调查,教师根据教学经验对各类专业知识进行赋权;最后根据调查数据的统计分析得出合格数学教师需要具备的专业知识结构,并通过访谈对量化结果进行补充和说明。子问题二通过测试了解职前数学教师专业知识的现状和掌握水平。首先通过整理历年教师资格考试《数学学科知识与教学能力》(高级中学)科目的真题,明确各类知识的考查比例、题型和分值;然后结合子问题一的调查结果,确定测试所考查的内容、题型及分值,对试题进行抽取、组合、制定评分标准;接着,选取1所部属师范大学、1所省属师范大学和2所省属师范学院的数学师范生作为调查对象,展开测试;最后根据测试数据的统计分析得出职前数学教师的实际专业知识结构及水平。子问题三是基于前两个子问题的数据分析结果,再结合教师访谈,探讨职前数学教师实际的专业知识结构、不同知识掌握水平下的职前数学教师专业知识结构与教师期望的专业知识结构的一致性和合理性。研究结论如下:(1)合格数学教师的专业知识结构中数学学科知识的权重最大。教师视角下的合格数学教师需要具备的三类专业知识按照权重大小依次是数学学科知识(45.20%)、数学教学知识(30.71%)、数学课程知识(24.09%)。该知识结构可划分为三种类型。不同群体教师对各类知识权重的看法基本一致。(2)职前数学教师对所考查的数学专业知识基本能够掌握。实际知识结构中数学学科知识的权重最大。参与本研究的职前数学教师专业知识的掌握程度由低到高可划分为四个水平:前水平、识记水平、关联水平和综合水平。不同类型学校的职前数学教师专业知识测试得分具有显着差异,得分由高到低分别为部属师范大学、省属师范大学、省属师范学院。(3)职前数学教师的实际知识结构中,各类知识的权重大小顺序与教师期望的专业知识结构一致,即职前数学教师的实际知识结构是合理的。知识掌握程度处在四个水平的职前数学教师的专业知识结构也是合理的。教师期望的学科知识权重低于职前数学教师的实际权重,教师期望的教学知识权重却高于职前数学教师的实际权重,导致这一现象的原因在于职前数学教师教学经验的缺乏。根据上述研究结论,对职前数学教师教育提出相关建议:(1)职前数学教师应以理论知识学习为主;(2)职前数学教师应提高教学知识储备。
沈中宇[4](2021)在《面向教师教育的数学知识研究 ——以S市高中数学教研员为例》文中研究表明百年大计,教育为本。教育大计,教师为本。教师培养的关键是教师教育,要改善教师教育的效果,教师教育者的作用无疑是至关重要的,因此,数学教师教育者在数学教师教育中发挥着重要的作用。近年来,数学教育研究者开始关注数学教师教育者的研究,其中,“面向教师教育的数学知识”(Mathematical Knowledge for Teaching Teachers,简称MKTT)理论为研究一般数学教师教育者所需要的数学知识提供了借鉴。但已有的研究中对于“面向教师教育的数学知识”仍然缺乏清晰准确的刻画,同时,相关研究主要集中在理论构建,相关的实证研究较少。基于以上原因,本文以面向教师教育的数学知识为研究主题,选取高中数学教研员作为研究对象,主要探讨以下三个研究问题:(1)构成面向教师教育的数学知识的要素有哪些?(2)高中数学教研员具备哪些面向教师教育的数学知识?(3)在数学教研活动中,高中数学教研员反映出哪些面向教师教育的数学知识?针对本研究的三个研究问题,将研究设计分为三个阶段,分别为文献分析与框架确立、问卷调查与深度访谈以及现场观察与案例分析。文献分析与框架确立阶段采用了专家论证法。首先通过文献分析梳理已有的数学教师教育者专业知识框架,接着通过对相关的成分和子类别的反复比较,构建初始的面向教师教育的数学知识框架,最后通过三轮专家论证得到最终的面向教师教育的数学知识框架。问卷调查与深度访谈阶段采用了问卷调查法和深度访谈法。其中选取了高中数学中重要的数学主题编制了调查问卷和访谈提纲,通过编码分析高中数学教研员的问卷回答和访谈实录,从而了解高中数学教研员具备的面向教师教育的数学知识。现场观察与案例分析采用了案例研究法。其中观察了不同的高中数学教研员的多次教研活动,在观察过程中对教研活动进行录音并在观测后对高中数学教研员进行访谈,对录音和访谈材料进行编码和统计,从而剖析高中数学教研员在教研活动中反映的面向教师教育的数学知识。本研究的基本结论是:1.构成面向教师教育的数学知识的要素包括4个成分与12个子类别。构成成分为学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识。学科内容知识包含的子类别为一般内容知识、专门内容知识和关联内容知识,教学内容知识包含的子类别为内容与学生知识、内容与教学知识和内容与课程知识,高观点下的数学知识包含的子类别为学科高等知识、学科结构知识和学科应用知识,数学哲学知识包含的子类别为本体论知识、认识论知识和方法论知识。2.高中数学教研员具备的面向教师教育的数学知识情况如下。(1)高中数学教研员在学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识4个成分中并不存在明显的短板;(2)高中数学教研员对不同知识成分的掌握存在一定差异,其中,在学科内容知识和教学内容知识2个方面掌握较好,而在高观点下的数学知识和数学哲学知识2个方面还有所欠缺;(3)高中数学教研员在各个知识成分中有以下具体理解:在学科内容知识方面,对于基本的概念、定理和公式的合理性以及不同概念、定理和公式之间的联系较为熟悉;在教学内容知识方面,对于学生有关特定数学内容学习的困难,不同数学内容的教授方式和相关数学内容在教科书中的编排理解较深;在高观点下的数学知识方面,能够对中学数学知识作出一定程度的推广、涉猎不同学科中数学知识的应用;在数学哲学知识方面,能够大致解释数学定义的基本作用和标准、数学研究的动力、数学证明的作用和价值以及数学的基本思想方法。(4)高中数学教研员在各个知识成分中有以下欠缺之处:在学科内容知识方面,对于定义的多元性、解释的多样性和联系的普遍性方面还有进步的空间;在教学内容知识方面,对于学生数学学习困难的细致理解、不同数学内容的深入教授和教学内容编排意图的全面考虑还有提升的余地;在高观点下的数学知识方面,从高观点理解中学数学知识、分析不同知识的联系和在不同学科中应用数学知识方面还有较多需要完善的地方;在数学哲学知识方面,还不能形成系统的理解。3.在数学教研活动中,高中数学教研员反映出的面向教师教育的数学知识情况如下。(1)高中数学教研员反映的面向教师教育的数学知识大部分属于教学内容知识和学科内容知识,小部分属于数学哲学知识和高观点下的数学知识。(2)高中数学教研员在数学教研活动中的主要知识来源为一般内容知识、内容与教学知识、学科高等知识和方法论知识。(3)高中数学教研员在数学教研活动中反映的面向教师教育的数学知识主要有:在学科内容知识方面有数学中的基本概念、定理、公式和性质及其由来、表征、证明及解释;不同数学概念、定理、公式之间的联系。在教学内容知识方面有学生对特定数学内容理解存在的困难;不同数学内容的引入、辨析、应用和小结的教学方法;特定数学内容在课程标准中的要求和在教科书中的编排。在高观点下的数学知识方面有中学数学课程中的数学概念在高等数学中的推广;高观点下不同数学概念之间的联系;数学知识在现代科学和实际生活中的应用。在数学哲学知识方面有对数学定义的认识;对数学认识过程的理解;推理论证在数学中的作用;数学研究的思想方法。本研究对于教师教育者专业标准的制订、数学教师教育者专业培训的设计和数学教师专业发展项目的规划有一定启示,后续可以在数学教师教育者的专业知识、数学教师教育者的专业发展和数学教师教育者的工作实践等方面进一步开展研究。
蒋玥[5](2020)在《改革开放以来高中数列内容的变迁研究 ——以人教版教科书为例》文中研究说明数列作为一种特殊的函数——离散函数,是高中数学教学中的重要内容,也是反映自然规律的基本的、重要的数学模型,数学家弗赖登塔尔说过:“无论从历史的、发生的还是从系统的角度看,数的序列都是数学的基石。可以说,没有数的序列就没有数学。”改革开放以来,我国数学教育领域共进行了4次基础教育课程改革,每一次课程改革都伴随着教科书内容的改革。在新一轮以核心素养导向的数学课程改革之际,回顾和梳理改革开放以来人教版高中数学教科书数列内容的变革历程和发展脉络,归纳其变迁特点及经验,挖掘其变迁原因,对未来数学教科书数列内容的变革有重要借鉴价值。本文选取改革开放以来的9本人教版教科书,运用文献法、内容分析法、比较法、历史研究法和建模法对数列内容的变迁进行分析。在改革开放以来数学教学大纲(课程标准)中对数列内容的要求下,从教科书中数列的文本内容、组织结构和数列的具体变迁三方面进行分析。对数列文本内容的研究,主要从数列的课程容量、课程难度、编写体例、例题和习题难度的变化四方面展开。得到以下结论:教学大纲方面:数列的课程目标要求更加具体,除了对传统“双基”提出要求,也开始要求数学的基本思想和基本活动经验。文本内容方面:第一,数列内容逐渐精简,但数列的目标要求逐渐具体化、多元化,使得内容难度不减反增。第二,体例逐渐丰富,添加了体现数学史、时代发展的内容,对于提高学生思维发展的延伸知识,也通过“阅读与思考”“探究与发现”等栏目呈现出来。第三,数列内容的例题和习题的题量减少,但题目的类型多样,背景信息也逐渐丰富,例题和习题的设置逐渐向提高学生认知能力方面转变。第四,数列具体内容的概念性知识的表述保持稳定,其引入方式和推导方法愈加丰富,考虑到学生的认知心理。组织结构方面:第一,数列内容的结构越加清晰,注重主干知识,与函数知识的连通性有所提高。第二,数列内容的组织结构由“直线式上升”逐渐过渡到“螺旋式上升”,由学科结构式转变到学科和学生心理相结合式。最后,对数列内容的变迁原因进行分析,结合改革开放以来数列的变迁特点、经验以及访谈结果对教师使用新版教科书进行数列教学时提出几点建议。
郑嘉佳[6](2020)在《基于UbD模式下高中函数单调性单元的逆向教学设计》文中提出新课程标准中提出了以三条内容主线为主题的单元教学的思想,并强调了需要将整体把握教学内容作为促进数学核心素养发展的重要手段,基于此,笔者展开了基于“UbD”模式理论指导下以“函数单调性”作为主线的“函数单调性”单元教学设计研究,旨在探讨逆向教学的单元教学设计,具体是探讨三个问题:(1)基于“UbD”模式的教学设计程序;(2)基于“UbD”模式的函数单调性教学设计案例;(3)基于“UbD”模式的教学策略.本研究采用了文献研究法、问卷调查法、课堂观察法、访谈调查法、案例研究法.首先通过查找文献,基于“UbD”模式对逆向教学设计的具体步骤进行探讨,形成基于“UbD”模式下的单元设计模板以及框架;其次,通过对函数概念教学的现状以及对以“函数单调性”为主线的“函数单调性”单元内容的分析,结合单元设计模板的具体步骤,对“函数单调性”单元教学设计进行研究,于实践为基础形成示范案例;最后,对教学设计进行总结与反思,得到基于“UbD”模式逆向教学的数学教学策略,以望能提供一些教学设计经验.本研究的结论主要由两个部分组成:第一,基于“UbD”模式下的教学设计程序为:教学内容分析、教学目标设计、学情分析、教学评估设计、教学策略分析、教学过程设计、生成对应的教学设计的程序框架表;第二,通过具体的函数单调性单元的设计案例的得失分析,得到了有利于“UbD”模式逆向教学的数学教学策略为:(1)确定单元主要问题,设定学习预期;(2)教学评估先于教学设计,提升教学针对性;(3)帮助学生学会如何选择信息,总结基本方法;(4)帮助学生学会如何组织信息,明确内容结构;(5)帮助学生对信息进行整合,促进有意义学习;(6)帮助学生学会有效反思,提升数学素养.
朱娟[7](2020)在《基于数学核心素养的高中数列教学现状调查研究》文中指出《普通高中数学课程标准(2017年版)》(以下简称《新课标》)中提出了数学核心素养,并明确界定了其内涵,即学生应具备的、能够适应终身发展和社会发展需要的,与数学有关的思维品质和关键能力。具体划分为数学抽象、逻辑推理、数学运算、数学建模、数据分析和直观想象素养六大核心素养。而“数列”则侧重培养学生的数学抽象、逻辑推理、数学运算和数学建模素养。本文聚焦于数学核心素养,以“数列”内容为载体,以《新课标》中的数学学科核心素养水平划分标准为依据制定评价框架,对云南省昆明市Y中学高一年级学生的数学核心素养水平现状及教师的教学现状进行了调查分析。对学生的调查结果如下:(1)四个核心素养中学生的数学运算素养水平最好,其次是逻辑推理素养水平,而数学抽象素养和数学建模素养水平相对较低;(2)文科班与理科班的数学核心素养水平存在显着性差异。重点班与普通班的数学核心素养水平也存在显着性差异。而男生和女生的数学核心素养水平没有显着差异;(3)不同性别及分班对学生数学核心素养水平的交互作用显着,即两者的交互项对学生核心素养水平的高低有一定影响;(4)学生自我评价的素养水平与实际测试的素养水平存在偏差,且自我评价素养水平高于实际水平。另外,对教师的调查结果如下:(1)对于《新课标》提出的数学学科核心素养的概念,许多教师理解得不透彻或者有偏差;(2)针对“数列”内容的教学,部分教师在教学理念、教学实践、教学评价与反思中均存在某些不足,亟需优化和改进。通过调查结果分析,针对教师的教学及学生的数学核心素养水平现状,对“核心素养观”下的高中数列教学设计提出以下策略:(1)突出函数主线,注重在函数的视角和背景下对数列进行解剖,突出数列的本质,发展数学抽象;(2)习题教学设计中着重引导思维训练,同时重视学生运算的精准,培养逻辑推理及数学运算素养;(3)知识应用教学中,问题设置联系实际生活,引导学生用数列知识解决实际问题,培养数学建模核心素养;(4)以知识教学为核心渗透数学文化,发展数学文化背景下的思维活动,提升核心素养。最后基于数学核心素养的数列教学设计方法探讨,提供了三个教学设计案例。本研究对培养学生数学核心素养的途径方面提供一些借鉴,起到了抛砖引玉的作用。
栗晶晶[8](2020)在《基于大观念的高中数学章首课教学设计》文中提出数学学科核心素养的提出要求高中数学教师通过更高站位的教学思考和教学实践引导学生树立整体学习的观念.章首课作为整章教学的先行组织者,对整章学习具有宏观调控的作用,是培养学生整体观念的良好载体.因此,将大观念与高中数学章首课教学设计相结合为落实数学学科核心素养提供了新思路.同时,实际教学中高中数学教师对于大观念和章首课的认识还不够全面和深刻,很少能够基于大观念设计章首课的教学,因而章首课未能实现其统领全章的功能和价值.基于以上背景,本文主要采用文献分析法和案例分析法,以实现大观念的理解、联结、迁移功能为目的,以数学核心概念、中心问题、主要思想方法为大观念的主要表现形式,从要求与策略、过程与方法两方面研究基于大观念的高中数学章首课教学设计.本文分析了大观念及高中数学章首课教学设计的具体含义,提出了基于大观念的高中数学章首课教学设计应满足的要求,即突出先行组织者的作用、体现大观念的核心地位、包含丰富的知识生长点,相应地给出了找准起点、精选内容、整合目标、明确主线、巧设问题和阶段评价6条教学设计策略,并在教学设计策略的基础上按照教学起点分析→教学目标分析→教学内容的选择与整合→教学过程设计→学习效果评价的过程提出了具体的教学设计方法.在理论研究的基础上,又分别以大观念的三种表现形式为主线完成了三个有代表性的教学设计案例,充分说明本文的理论研究结论在指导实践方面的可行性。
张彬[9](2019)在《APOS理论下的“数系的扩充与复数的引入”教学研究》文中认为在数学新课程改革的过程中,新时代的高中数学教师在数学教学活动时,需要紧扣新课程标准,把握数学内容的本质,采取合适的教学模式、精心设计合适的教案,以此培养学生的数学核心素养,提升学生的综合能力。近年来,诸多学者将APOS理论应用于高中数学教学研究,研究表明APOS理论的应用对学生能力的培养是有帮助的。“数系的扩充与复数的引入”整个章节是高中阶段学生最后一次经历数系的扩充,无论是对知识技能的掌握、思想方法的应用还是数学文化的渗透,都有着重要的意义。故笔者以APOS理论为指导,对“数系的扩充与复数的引入”整个单元展开教学实践研究。为了能够将APOS理论更好的运用到高中数学的课堂教学,本文首先对APOS理论的相关文献进行综合分析与研究,使理论进一步的具体化。然后通过问卷调查与访谈,对“数系的扩充与复数的引入”内容的教学现状进行调查,调查对象分别是无锡某四星级高中高二年级四个班的学生,对该学校的两名工作经验丰富的数学教师进行访谈。结合复数内容的教学现状,对照课程标准、教材对这部分内容的要求,通过定量分析和定性探讨,对目前的教与学进行剖析,分析存在问题及原因。在现状调查的基础上,探究了 APOS理论在复数教学中应用的可行性和必要性;在相关教学策略与教学原则的指导下,设计出APOS理论下复数整个单元的教学设计,并将此教学设计应用于笔者所带班级的课堂;授课结束后,编制检测卷对实验班与对照班的学生检测,对检测结果分析总结。同时,在教学实践中分析学生学习经常出现的认知与非认知障碍,并给出教学建议,反思APOS理论指导教学实践中的局限性等相关问题。测试结果分析等表明,运用APOS理论于复数的引入的教学,无论是学生的学习成绩,还是对学习的态度,效果还是比较显着的。本文的创新之处在于将APOS理论应用于复数单元教学,为高中复数的教学从理论上提供了新的教学理论和教学方式。
张先波[10](2019)在《中学数学思想的培养研究 ——基于深度教学的视角》文中指出从原始的结绳记事,到对于数与形的重视;从楔形文字、象形文字的表达,到初等数学符号的出现;从面向生活实践的零散数学规律,到系统性的数学学科体系。数学这门古老的学科,在迈过其漫长的发展历史之后,在学校教学的过程中继续生根发芽。作为学校教育中的一门基础性学科,数学不仅致力于传递古今中外的数学知识和定律,更重要的是在与学校生活中其他学科的交融过程中,使学生通过知识的学习,领会数学思想,感悟数学之美。曾有学者指出,数学是关于美的学科,数学是关于艺术的学科,数学是不断反思发展的学科。数学之美,体现在其数字的变幻之美,体现在数学公式的平衡之美,体现在数学发现的探索之美,同时也蕴含在学生学习数学过程中所体会到的获得之美。数学同时还是关于思想的学科,历代数学家根据自己对相关数学领域的研究,不断充实数学思想库,在传承与创新的过程中实现数学学科的不断发展。关于数学是一门艺术还是一门科学性学科的争论至今仍然存在,数学是一门艺术体现在数学通过艺术化的语言、简练的公式表达,使得数学思想得以发展,数学学科也称为学科发展史上的一朵奇葩。数学是一门科学,数学的语言及表达要求精确而凝练地指出相应的意图,要求数学学习者和研究者对于相应数学思想的深刻化理解,并在此基础上做到运用时的精准化。数学同时是一门生活化的学科,原始的数学便发端于人们对于生活问题的解决过程。如古埃及数学文明的发展,便是由于尼罗河三角洲的河道淤积以及洪水泛滥等问题,迫使数学家开始研究淤积的面积,并提供相应的预测。数学的发展往往受到社会经济发展的影响,数学发展的每一个重要阶段必然伴随着社会发展的需要,并且也在顺应社会的需求。这一点在近现代数学发展史中得到了印证,尤其是在现代社会中数学与信息技术的融合,以及基础数学研究的日益专门化和数学教育的大众化等趋势,均是数学与社会经济发展相适应的表现。无论是古典时期阿基米德的几何《原本》,还是现代数学家所取得的重要成就和关键突破,均为数学的发展画上了浓墨重彩的一笔。当前数学的发展,除了需要数学家和相关研究者持续不断的努力,同时需要学校教育培养出对数学感兴趣、能够领悟数学之美的人才。学校教育的产生,在人类历史上无疑是具有划时代意义的事件,它使得人类文明的传承有了相对规范化和制度化的途径。学校教育的产生以及与之相伴随的学科教育的发展,使得人类发展史上的重要成果能够分门别类的进行传递和发展。正如学者所言,我们的数学教育并非是使每个孩子的都成为数学家,而是要在他们心中埋下数学的种子,使他们感悟和理解数学之美。学科教学的过程,不应当只是知识的传递过程,更重要的是学科教学应该成为思想领悟的过程,成为数学知识向数学思想跨越的过程。数学知识的学习是数学思想领悟与获得的基础,是数学深度学习达成的必要前提。基于深度教学的视角探讨中学数学思想的培养过程意味着,从知识观、学习观和教学观等方面进行中学主要数学思想进行培养。从深度教学的视角而言,知识的结构分为符号表征、逻辑结构和意义系统三个层次。数学知识教学过程中,应当是超越知识的符号性教学和表层化教学,进而深入到知识的内部结构之中,使学生在领悟数学学科知识的结构的基础之上,获得数学思想的熏陶。从数学知识到数学思想,不仅是数学教学的飞跃式发展,同时也是教学走向深度的必然要求。当前对于学生关键能力和核心素养培养的重视,最终需要回归到各个学科教学的过程中来,通过学科教学逐步渗透相应的学科思想,培养学生优秀的学科思维,进而促使学科能力和学科素养的提升。尤其是对于中学数学教学而言,中学处于义务教育阶段是学生相应学科思想学习的黄金时期,这一阶段的数学思想学习尤其需要引起教师和学生的重视,课堂教学应当以学科思想,即重要的数学思想为线索,将数学知识串点成线成面。学生的数学学习过程,经由学科思想的浸润,通常能够加深对于数学学科的认识,加深对数学知识的理解以及促进其对于学科结构的把握。因而,数学思想的教学之于数学教学过程而言至关重要,从数学知识到数学思想的跨越是当前课堂教学应当关注的重点。同时,如何在中学教学过程中培养学生的数学思想以及数学思维品质,也是一线教师及研究者应关注的的问题之一。
二、数列极限概念教学的层次性(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、数列极限概念教学的层次性(论文提纲范文)
(1)基于APOS理论的指数函数概念教学研究(论文提纲范文)
摘要 |
ABSTRACT |
1 绪论 |
1.1 问题的提出 |
1.2 核心概念界定 |
1.3 研究意义 |
1.4 研究思路 |
1.5 研究方法 |
1.6 研究重点、难点、创新点 |
1.7 论文结构 |
2 文献综述与理论基础 |
2.1 文献综述 |
2.2 理论基础——APOS理论 |
3 研究设计与过程 |
3.1 研究对象 |
3.2 研究工具 |
3.3 数据的处理 |
4 研究结果与分析 |
4.1 总体测试结果统计与分析 |
4.2 各阶段测试结果统计与分析 |
4.3 访谈结果与分析 |
5 指数函数学习现状与成因分析 |
5.1 高一学生指数函数学习现状 |
5.2 原因分析 |
6 结论、建议与展望 |
6.1 研究结论 |
6.2 教学建议 |
6.3 研究不足与展望 |
参考文献 |
附录 |
附录1 指数函数测试卷 |
附录2 教师访谈提纲 |
附录3 学生访谈提纲 |
致谢 |
(2)小学数学教师研读教材的实践研究 ——以Z名师工作室为例(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 核心概念界定与相关概念辨析 |
1.3 研究的理论基础与模式 |
1.4 研究的内容 |
1.5 研究的目的和意义 |
1.6 研究的思路 |
1.7 论文的结构 |
第2章 文献综述 |
2.1 课程理解的相关研究 |
2.1.1 教师课程理解的内涵 |
2.1.2 教师课程理解的基本内容 |
2.1.3 教师课程理解的影响因素 |
2.2 教材理解的相关研究 |
2.2.1 教材理解重要性 |
2.2.2 教材使用 |
2.3 研读教材的相关研究 |
2.3.1 研读教材的重要性 |
2.3.2 研读教材的内容 |
2.3.3 研读教材的视角 |
2.3.4 研读教材的方法 |
2.3.5 研读教材的策略 |
2.4 文献评述 |
第3章 研究设计 |
3.1 研究对象 |
3.2 研究工具 |
3.3 研究方法 |
3.4 资料收集与整理 |
3.5 研究的伦理 |
3.6 小结 |
第4章 小学数学教材“数与代数”模块的内容分析 |
4.1 研读“数与代数”模块的总体设计 |
4.1.1“数与代数”在四大模块中单元数的分布情况 |
4.1.2“数与代数”在四大模块中课时数的分布情况 |
4.1.3“数与代数”模块知识结构体系的呈现 |
4.1.4“数与代数”模块新知识例题数分布情况 |
4.1.5“数与代数”模块单元、节的基本结构 |
4.2“数的认识”部分教学内容分析 |
4.2.1 研读教材知识结构体系 |
4.2.2 研读教学内容间的联系与衔接 |
4.3“数的运算”部分教学内容分析 |
4.3.1 研读教材知识结构体系 |
4.3.2 研读教学内容间的联系与衔接 |
4.4“常见的量”部分教学内容分析 |
4.4.1 研读教材知识结构体系 |
4.4.2 研读教学内容间的联系与衔接 |
4.5“探索规律”部分教学内容分析 |
4.6“代数初步”部分教学内容分析 |
4.6.1 研读“式与方程”部分教材知识结构 |
4.6.2 研读“正、反比例”部分教材知识结构 |
4.7 研读“数与代数”模块教学内容的特点 |
4.7.1 关注生活情境的运用 |
4.7.2 关注学生数感的培养 |
4.7.3 重视算理与算法的联系 |
4.7.4 重视估算意识与能力的培养 |
4.8 小结 |
第5章 小学数学教师研读教材的过程与方法 |
5.1 小学数学教师研读教材的愿景 |
5.1.1 致力于完成学科教学任务、打造高效课堂 |
5.1.2 致力于全面、深入地把握教材文本传递的作用 |
5.1.3 致力于推进素质教育的实施、更好地服务学生 |
5.1.4 致力于提升教师专业素养、促进其职业发展 |
5.2 小学数学教师研读教材时应遵循的原则 |
5.2.1 理论与实践相结合的原则 |
5.2.2 间接经验与直接经验相结合的原则 |
5.2.3 继承与创新相结合的原则 |
5.3 小学数学教师研读教材的方法 |
5.3.1 整体系统研读法 |
5.3.2 深度追问研读法 |
5.3.3 横纵对比研读法 |
5.3.4 移情理解研读法 |
5.4 小学数学教师“研”教材文本的步骤 |
5.4.1 课标为据,明晰要求 |
5.4.2“初研”教材整体结构 |
5.4.3“再研”教材重点、难点和关键 |
5.4.4“细研”主题图、例题和习题 |
5.4.5“深研”教材编写意图 |
5.5 小学数学教师研读教材的方式 |
5.5.1 自我研读 |
5.5.2 交流研读 |
5.5.3 合作研读 |
5.5.4 指导研读 |
5.6 小学数学教师研读教材前后的教育教学效果 |
5.7 小结 |
第6章 小学数学教师研读教材的课例分析 |
6.1 研读教材课例的选取 |
6.1.1 内容层次 |
6.1.2 水平层次 |
6.1.3 结构层次 |
6.2“数的认识”部分课例分析——还原数学知识的本质原理 |
6.2.1 执教教师、学生与教学主题 |
6.2.2 课标、教材、教师教学用书中的“分数的初步认识” |
6.2.3 教师内化教材“研”的过程 |
6.2.4 教师外化教材“读”的过程 |
6.3“数的运算”部分课例分析——还原数学知识的本质原理 |
6.3.1 执教教师、学生与教学主题 |
6.3.2 课标、教材、教师教学用书中的“单价、数量和总价” |
6.3.3 教师内化教材“研”的过程 |
6.3.4 教师外化教材“读”的过程 |
6.4“常见的量”部分课例分析——追溯数学知识的形成过程 |
6.4.1 执教教师、学生与教学主题 |
6.4.2 课标、教材、教师教学用书中的“认识钟表” |
6.4.3 教师内化教材“研”的过程 |
6.4.4 教师外化教材“读”的过程 |
6.5“探索规律”部分课例分析——丰富数学知识的表现形式 |
6.5.1 执教教师、学生与教学主题 |
6.5.2 课标、教材、教师教学用书中的“数学广角——数与形” |
6.5.3 教师内化教材“研”的过程 |
6.5.4 教师外化教材“读”的过程 |
6.6“代数初步”部分课例分析——追溯数学知识的形成过程 |
6.6.1 执教教师、学生与教学主题 |
6.6.2 课标、教材、教师教学用书中的“用字母表示数” |
6.6.3 教师内化教材“研”的过程 |
6.6.4 教师外化教材“读”的过程 |
6.7“数与代数”模块各教学课例研读设计的形成过程 |
6.7.1 各教学课例研读设计的形成过程 |
6.7.2 微循环研究过程的作用 |
第7章 研究的结论与反思 |
7.1 研究的结论 |
7.2 基于研究结论的启示 |
7.3 研究的反思 |
7.4 结束语 |
参考文献 |
附录 |
攻读学位期间发表的论文和研究成果 |
致谢 |
(3)职前数学教师专业知识结构及水平的实证研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
第一节 研究背景 |
第二节 研究问题 |
第三节 研究意义 |
第四节 论文结构 |
第二章 文献综述 |
第一节 教师知识 |
一.知识的内涵及分类 |
二.教师知识的分类 |
第二节 数学教师知识 |
一.数学教师学科知识 |
二.数学教师学科教学知识 |
三.数学教师知识相关文献的量化分析 |
第三节 职前数学教师知识 |
一.职前数学教师知识的现状及来源 |
二.职前数学教师知识中某类具体知识 |
三.职前数学教师综合性知识和技能 |
四.中外职前数学教师知识的对比 |
第四节 本章小结 |
第三章 研究设计与实施 |
第一节 研究思路与方法 |
一.研究思路 |
二.研究方法 |
第二节 相关概念界定 |
一.教师知识 |
二.数学教师专业知识 |
三.职前教师 |
四.知识结构 |
第三节 理论基础与框架 |
一.数学教师专业知识分类框架构建 |
二.职前数学教师专业知识分析层次建构 |
第四节 研究的具体过程 |
第四章 教师视角下的合格数学教师专业知识结构 |
第一节 教师视角下合格数学教师专业知识结构描述分析 |
第二节 教师视角下合格数学教师专业知识结构聚类分析 |
第三节 不同群体教师对合格数学教师各类知识权重看法的量化分析 |
一.不同教龄教师对合格数学教师各类知识权重看法的差异分析 |
二.不同职称教师对合格数学教师各类知识权重看法的差异分析 |
三.不同称号教师对合格数学教师各类知识权重看法的差异分析 |
四.不同学历教师对合格数学教师各类知识权重看法的差异分析 |
第四节 教师视角下合格数学教师各类知识权重看法的质化分析 |
第五节 本章小结 |
第五章 职前数学教师专业知识现状分析 |
第一节 职前数学教师专业知识掌握情况的水平划分 |
一.职前数学教师专业知识测试成绩整体描述 |
二.职前数学教师测试总成绩的水平分布 |
三.职前数学教师主观题作答情况的水平分析 |
第二节 职前数学教师专业知识的实际结构 |
第三节 不同类型学校职前数学教师专业知识得分情况的差异分析 |
一.不同类型学校职前数学教师总成绩的差异分析 |
二.不同类型学校职前数学教师各类知识得分的差异分析 |
第四节 不同性别职前数学教师得分情况的差异分析 |
一.不同性别职前数学教师总成绩的差异分析 |
二.不同性别职前数学教师各类知识得分的差异分析 |
第五节 各类数学专业知识之间的关系分析 |
一.各类数学专业知识得分之间的相关性分析 |
二.数学学科知识对数学教学知识的影响分析 |
三.数学学科知识对数学课程知识的影响分析 |
第六节 本章小结 |
第六章 职前数学教师专业知识实际结构与期望结构的对比分析 |
第一节 职前数学教师专业知识实际结构与期望结构的整体比较 |
第二节 不同水平下职前数学教师专业知识实际结构与期望结构的比较 |
一.前水平的职前数学教师专业知识结构的比较 |
二.识记水平的职前数学教师专业知识结构的比较 |
三.关联水平的职前数学教师专业知识结构的比较 |
四.综合水平的职前数学教师专业知识结构的比较 |
第三节 职前数学教师专业知识结构的讨论 |
第四节 本章小结 |
第七章 结论与建议 |
第一节 研究的结论 |
第二节 研究的建议 |
第三节 研究的局限性与展望 |
参考文献 |
附录 |
附录1 中学数学教师知识结构状况调查与访谈提纲 |
附录2 数学教师专业知识分类框架 |
附录3 中学数学教师知识权重调查问卷 |
附录4 教师资格考试2014-2018 试题汇总 |
附录5 职前数学教师专业知识与基本能力测试 |
附录6 职前数学教师专业知识与基本能力测试参考答案 |
附录7 职前数学教师专业知识结构及其培养策略访谈提纲 |
后记 |
在学期间公开发表论文及着作情况 |
(4)面向教师教育的数学知识研究 ——以S市高中数学教研员为例(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景 |
1.1.1 教师教育者的专业发展需要关注 |
1.1.2 数学教师教育者的研究值得重视 |
1.1.3 数学教师教育者的专业知识有待探索 |
1.2 研究问题 |
1.3 研究意义 |
1.3.1 理论意义 |
1.3.2 实践意义 |
1.4 论文结构 |
第2章 文献述评 |
2.1 数学教师教育者的专业知识 |
2.1.1 数学教师教育者的专业知识框架 |
2.1.2 数学教师教育者的专业知识测评 |
2.1.3 文献小结 |
2.2 数学教师教育者的专业发展 |
2.2.1 数学教师教育者的专业发展框架 |
2.2.2 数学教师教育者的专业发展调查 |
2.2.3 文献小结 |
2.3 数学教师教育者的工作实践 |
2.3.1 数学教师教育课堂的学习任务框架 |
2.3.2 数学教师教育课堂的学习任务实践 |
2.3.3 文献小结 |
2.4 文献述评总结 |
第3章 研究方法 |
3.1 研究设计 |
3.1.1 文献分析与框架确立 |
3.1.2 问卷调查与深度访谈 |
3.1.3 现场观察与案例分析 |
3.2 研究对象 |
3.2.1 专家论证对象 |
3.2.2 问卷调查对象 |
3.2.3 深度访谈对象 |
3.2.4 案例研究对象 |
3.3 研究工具 |
3.3.1 论证手册 |
3.3.2 调查问卷 |
3.3.3 访谈提纲 |
3.3.4 观察方案 |
3.4 数据收集 |
3.4.1 专家论证 |
3.4.2 问卷调查 |
3.4.3 深度访谈 |
3.4.4 现场观察 |
3.5 数据分析 |
3.5.1 专家论证 |
3.5.2 问卷与访谈 |
3.5.3 现场观察 |
第4章 研究结果(一):面向教师教育的数学知识框架 |
4.1 文献分析 |
4.1.1 已有框架选取 |
4.1.2 相关成分析取 |
4.1.3 相关类别编码 |
4.2 框架构建 |
4.2.1 相关类别合并 |
4.2.2 相应成分生成 |
4.2.3 初步框架构建 |
4.3 框架论证 |
4.3.1 第一轮论证 |
4.3.2 第二轮论证 |
4.3.3 第三轮论证 |
第5章 研究结果(二):高中数学教研员具备的面向教师教育的数学知识 |
5.1 学科内容知识 |
5.1.1 一般内容知识 |
5.1.2 专门内容知识 |
5.1.3 关联内容知识 |
5.2 教学内容知识 |
5.2.1 内容与学生知识 |
5.2.2 内容与教学知识 |
5.2.3 内容与课程知识 |
5.3 高观点下的数学知识 |
5.3.1 学科高等知识 |
5.3.2 学科结构知识 |
5.3.3 学科应用知识 |
5.4 数学哲学知识 |
5.4.1 本体论知识 |
5.4.2 认识论知识 |
5.4.3 方法论知识 |
5.5 总体分析 |
5.5.1 学科内容知识 |
5.5.2 教学内容知识 |
5.5.3 高观点下的数学知识 |
5.5.4 数学哲学知识 |
第6章 研究结果(三):数学教研活动中反映的面向教师教育的数学知识 |
6.1 案例1 |
6.1.1 第一轮观察:平均值不等式 |
6.1.2 第二轮观察:对数的概念 |
6.1.3 案例1 总体分析 |
6.2 案例2 |
6.2.1 第一轮观察:幂函数的概念 |
6.2.2 第二轮观察:函数的基本性质 |
6.2.3 案例2 总体分析 |
6.3 案例3 |
6.3.1 第一轮观察:幂函数的概念 |
6.3.2 第二轮观察:出租车运价问题 |
6.3.3 案例3 总体分析 |
6.4 案例4 |
6.4.1 第一轮观察:反函数的概念 |
6.4.2 第二轮观察:反函数的图像 |
6.4.3 案例4 总体分析 |
6.5 跨案例分析 |
6.5.1 学科内容知识 |
6.5.2 教学内容知识 |
6.5.3 高观点下的数学知识 |
6.5.4 数学哲学知识 |
6.5.5 案例总体分析 |
第7章 研究结论及启示 |
7.1 研究结论 |
7.1.1 面向教师教育的数学知识框架 |
7.1.2 高中数学教研员具备的面向教师教育的数学知识 |
7.1.3 高中数学教研活动中反映的面向教师教育的数学知识 |
7.2 研究启示 |
7.2.1 教师教育者的专业标准制订需要关注学科性 |
7.2.2 数学教师教育者的专业培训需要提升针对性 |
7.2.3 数学教师专业发展项目规划需要增加多元性 |
7.3 研究局限 |
7.4 研究展望 |
7.4.1 拓展数学教师教育者的专业知识研究 |
7.4.2 深入数学教师教育者的专业发展研究 |
7.4.3 延伸数学教师教育者的工作实践研究 |
参考文献 |
附录 |
附录1 论证手册(第一轮) |
附录2 论证手册(第二轮) |
附录3 论证手册(第三轮) |
附录4 调查问卷(第一版) |
附录5 调查问卷(第二版) |
附录6 调查问卷(第三版) |
附录7 调查问卷(第四版) |
附录8 调查问卷(第五版) |
附录9 访谈提纲 |
附录10 观察方案 |
作者简历及在学期间所取得的科研成果 |
致谢 |
(5)改革开放以来高中数列内容的变迁研究 ——以人教版教科书为例(论文提纲范文)
摘要 |
Abstract |
第1章 绪言 |
1.1 研究目的和意义 |
1.1.1 研究目的 |
1.1.2 研究意义 |
1.2 核心名词界定 |
1.2.1 改革开放 |
1.2.2 教科书 |
1.2.3 数列 |
1.2.4 变迁 |
1.3 研究内容及思路 |
1.3.1 研究内容 |
1.3.2 研究计划 |
1.3.3 研究的技术路线 |
1.4 研究的方法 |
1.4.1 文献法 |
1.4.2 比较研究法 |
1.4.3 访谈法 |
1.4.4 内容分析法 |
1.4.5 历史研究法 |
1.4.6 建模法 |
1.5 创新之处 |
1.6 理论基础 |
1.6.1 马克思主义哲学基础 |
1.6.2 曼海姆的知识社会学理论 |
1.6.3 建构主义理论 |
1.6.4 后现代主义 |
1.6.5 难度模型 |
第2章 文献综述 |
2.1 文献搜集的途径 |
2.2 国外的研究现状 |
2.3 国内的研究现状 |
2.4 文献评述 |
2.5 小结 |
第3章 改革开放以来高中数学教学大纲中数列内容的变迁 |
3.1 实行改革开放,高速发展时期(1978-1985) |
3.1.1 1978年大纲对数列的要求 |
3.1.2 1982年大纲对数列的要求 |
3.1.3 1983年大纲对数列的要求 |
3.2 实行义务教育,深化改革时期(1986-2000) |
3.2.1 1990年大纲对数列的要求 |
3.2.2 1996年大纲对数列的要求 |
3.3 新课程改革,全面深化改革发展时期(2001-至今) |
3.3.1 2002年大纲对数列的要求 |
3.3.2 2003年课标对数列的要求 |
3.3.3 2017年课标对数列的要求 |
3.4 小结 |
第4章 改革开放以来人教版高中数学教科书数列的变迁 |
4.1 改革开放以来人教版高中数学教科书数列文本内容的变迁 |
4.1.1 实行改革开放,高速发展时期(1978-1985) |
4.1.2 实行义务教育,深化改革时期(1986-2000) |
4.1.3 新课程改革,全面深化改革发展时期(2001-至今) |
4.1.4 例题和习题的难度变化 |
4.1.5 小结 |
4.2 改革开放以来人教版高中数学教科书数列的组织结构的变迁 |
4.2.1 实习改革开放,高速发展时期(1978-1985) |
4.2.2 实习义务教育,深化改革时期(1986-2000) |
4.2.3 新课程改革,全面深化改革发展时期(2001-至今) |
4.2.4 小结 |
4.3 改革开放以来人教版高中数学教科书数列的具体演变 |
4.3.1 概念 |
4.3.2 通项公式 |
4.3.3 前n项和公式 |
4.3.4 小结 |
4.4 小结 |
第5章 教科书中数列使用情况调查分析 |
5.1 教师访谈提纲 |
5.2 访谈资料的分析 |
5.3 访谈结果的分析 |
5.3.1 教师关于教科书中数列设置的看法 |
5.3.2 教师关于新教科书中数列内容的编写建议 |
5.4 小结 |
第6章 改革开放以来人教版高中数学教科书数列的变迁原因 |
6.1 数列变迁的外部影响因素 |
6.1.1 社会变革的影响 |
6.1.2 科技进步的需要 |
6.1.3 政治因素的影响 |
6.2 数列变迁的内部影响因素 |
6.2.1 课程改革的要求 |
6.2.2 学生需求的影响 |
6.3 小结 |
第7章 结论与思考 |
7.1 改革开放以来数列的变迁情况 |
7.2 改革开放以来数列的变迁特点 |
7.3 改革开放以来数列的变迁经验 |
7.4 研究的不足及展望 |
7.5 结束语 |
参考文献 |
攻读学位期间发表的学术论文和研究成果 |
附录 教师访谈提纲 |
致谢 |
(6)基于UbD模式下高中函数单调性单元的逆向教学设计(论文提纲范文)
中文摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 研究问题 |
1.3 研究意义 |
1.4 研究设计 |
1.4.1 研究对象 |
1.4.2 研究思路 |
1.4.3 研究方法 |
1.5 论文框架 |
第二章 文献综述 |
2.1 关于数学理解的研究现状 |
2.1.1 国外关于数学理解的研究现状 |
2.1.2 国内关于数学理解的研究现状 |
2.2 关于函数概念理解的研究现状 |
2.2.1 国外关于函数概念理解的研究现状 |
2.2.2 国内关于函数概念理解的研究现状 |
2.3 UbD模式 |
2.3.1 理解的六个侧面 |
2.3.2 逆向教学法 |
2.4 数学单元教学设计 |
第三章 高中函数概念教学现状调查及分析 |
3.1 问卷编制与访谈设计 |
3.1.1 高中函数概念教学情况的问卷设计 |
3.2 调查过程 |
3.2.1 问卷调查过程 |
3.2.2 访谈过程 |
3.3 信度检验与效度分析 |
3.4 调查结果 |
第四章 函数单调性单元教学分析 |
4.1 确定单元教学内容 |
4.2 分析教学要素 |
4.2.1 数学分析 |
4.2.2 课标分析 |
4.2.3 学情分析 |
4.2.4 教材分析 |
4.2.5 重难点分析 |
4.2.6 教学方式分析 |
4.3 编制单元教学目标 |
4.4 设计单元教学流程 |
4.5 评价、反思、修改 |
第五章 基于UbD模式下的函数单调性单元教学设计研究 |
5.1 教学设计程序 |
5.2 单元基本问题 |
5.3 教学目标的设计 |
5.4 教学评估设计 |
5.4.1 教学评估的目的 |
5.4.2 教学评估的对象 |
5.4.3 教学评估的方式 |
5.5 教学内容的设计 |
5.5.1 “函数的单调性”教学设计 |
5.5.2 “函数的单调性与导数”教学设计 |
第六章 基于UbD模式下的函数单调性单元教学案例研究 |
6.1 “函数的单调性”教学案例研究 |
6.2 “函数的单调性与导数”教学案例研究 |
6.3 教学案例分析总结 |
第七章 基于UbD模式逆向教学的教学策略 |
7.1 确定单元主要问题,设定学习预期 |
7.2 教学评估先于教学设计,提升教学针对性 |
7.3 帮助学生学会如何选择信息,总结基本方法 |
7.4 帮助学生学会如何组织信息,明确内容结构 |
7.5 帮助学生对信息进行整合,促进有意义学习 |
7.6 帮助学生学会有效反思,提升学科素养 |
第八章 研究结论 |
8.1 研究结论 |
8.2 研究不足与建议 |
附录1 关于对学生函数概念教学情况的调查问卷 |
附录2 关于函数概念教学情况对教师的访谈 |
附录3 “函数单调性”单元教学前的习题 |
附录4 “函数单调性”单元检测题 |
参考文献 |
致谢 |
个人简历 |
(7)基于数学核心素养的高中数列教学现状调查研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.1.1 我国高中数学核心素养的提出 |
1.1.2 高中数学核心素养的地位 |
1.1.3 数列在高中数学中的地位 |
1.1.4 数列教学研究中存在的问题 |
1.2 研究的内容和意义 |
1.2.1 研究的内容 |
1.2.2 研究的意义 |
1.3 研究的思路 |
1.3.1 研究计划 |
1.3.2 研究的技术路线 |
1.4 核心名词界定 |
1.4.1 数列 |
1.4.2 数学核心素养 |
1.5 论文结构 |
第2章 文献综述 |
2.1 文献搜集 |
2.2 数学素养研究现状 |
2.2.1 数学素养的起源与发展 |
2.2.2 国外数学素养研究现状 |
2.2.3 国内有关数学核心素养的研究 |
2.3 数列研究现状 |
2.3.1 数列教学设计的研究现状 |
2.3.2 数列解题策略的研究现状 |
2.4 数列教学与数学核心素养的研究 |
2.5 本章小结 |
第3章 研究的理论基础 |
3.1 建构主义理论 |
3.2 奥苏伯尔有意义学习理论 |
3.3 核心素养观下的教学理论 |
第4章 基于核心素养的高中数列教学现状调查研究设计 |
4.1 研究目的 |
4.2 研究方法 |
4.2.1 文献研究法 |
4.2.2 访谈法 |
4.2.3 问卷调查法 |
4.3 调查工具 |
4.4 高中生数学核心素养测试卷(数列)编制 |
4.4.1 数学运算素养问题设计及评分标准 |
4.4.2 逻辑推理素养问题设计及评分标准 |
4.4.3 数学抽象素养问题设计及评分标准 |
4.4.4 数学建模素养问题设计及评分标准 |
4.4.5 测试卷信度与效度分析 |
4.5 高中生数学核心素养问卷编制 |
4.5.1 学生问卷编制 |
4.5.2 信度与效度分析 |
4.6 教师问卷及访谈提纲编制 |
第5章 基于核心素养的数列教学现状调查过程及结果分析 |
5.1 调查对象 |
5.2 学生数学核心素养水平现状调查 |
5.3 学生数学核心素养水平调查结果 |
5.3.1 学生构成情况 |
5.3.2 核心素养水平的整体情况 |
5.3.3 数学运算素养水平 |
5.3.4 逻辑推理素养水平 |
5.3.5 数学抽象素养水平 |
5.3.6 数学建模素养水平 |
5.3.7 学生数学核心素养问卷调查结果分析 |
5.4 教师教学现状调查 |
5.4.1 教师问卷调查 |
5.4.2 教师访谈 |
5.5 教师调查结果分析 |
5.5.1 教师对于数列地位的理解 |
5.5.2 教师对数列内容在培养核心素养中作用的认识 |
第6章 基于数学核心素养的高中数列教学策略 |
6.1 基于数学核心素养的高中数列教学设计的主要策略 |
6.1.1 概念教学突出函数主线,培养数学抽象素养 |
6.1.2 习题教学强化思维训练,提升逻辑推理素养 |
6.1.3 应用教学联系实际生活,培养数学建模素养 |
6.1.4 教学设计渗透数学文化,调动学生积极性 |
6.2 基于数学核心素养的教学设计的基本方法 |
6.2.1 基于核心素养的教学目标设计 |
6.2.2 教学重难点设计瞄准核心素养 |
6.2.3 教学过程设计围绕核心素养 |
6.2.4 基于核心素养的教学评价 |
6.3 基于数学核心素养的高中数列教学设计案例 |
6.3.1 概念教学设计案例——“数列的概念” |
6.3.2 习题教学设计案例——“等差数列的性质” |
6.3.3 应用教学设计案例——“等比数列的应用” |
第7章 研究结论及反思 |
7.1 研究结论 |
7.2 研究的创新之处 |
7.3 研究不足与展望 |
参考文献 |
附录A 高中生数学核心素养测试卷(数列) |
附录B 高中生数学核心素养问卷 |
附录C 高中数列教学现状调查问卷(教师) |
附录D 高中数列教学现状教师访谈提纲 |
附录E 测试卷素养划分标准合理性调查 |
附录F 高中生数学核心素养测试卷(数列)评分标准 |
攻读学位期间发表的论文和研究成果 |
致谢 |
(8)基于大观念的高中数学章首课教学设计(论文提纲范文)
摘要 |
ABSTRACT |
1 绪论 |
1.1 研究背景 |
1.1.1 数学学科核心素养的提出 |
1.1.2 章首课教学现状 |
1.2 研究问题和意义 |
1.2.1 研究问题 |
1.2.2 研究意义 |
1.3 研究思路与方法 |
2 文献综述 |
2.1 研究现状 |
2.1.1 大观念研究现状 |
2.1.2 高中数学章首课研究现状 |
2.2 相关概念的界定 |
2.2.1 大观念 |
2.2.2 章首课 |
2.2.3 基于大观念的章首课教学设计 |
3 基于大观念的高中数学章首课教学设计要求与策略 |
3.1 章首课教学设计要求 |
3.1.1 突出先行组织者的作用 |
3.1.2 体现大观念的核心地位 |
3.1.3 包含丰富的知识生长点 |
3.2 章首课教学设计策略 |
3.2.1 找准起点,精选内容 |
3.2.2 整合目标,明确主线 |
3.2.3 巧设问题,阶段评价 |
4 基于大观念的高中数学章首课教学设计过程及方法 |
4.1 教学起点分析 |
4.1.1 章节整体知识结构分析 |
4.1.2 学生认知起点分析 |
4.2 教学目标分析 |
4.2.1 显性目标分析 |
4.2.2 隐性目标分析 |
4.2.3 发展目标分析 |
4.3 教学内容的选择与整合 |
4.3.1 教学内容的选择 |
4.3.2 教学内容的整合 |
4.4 教学过程设计 |
4.4.1 核心概念主线的教学过程设计 |
4.4.2 中心问题主线的教学过程设计 |
4.4.3 思想方法主线的教学过程设计 |
4.5 学习效果评价 |
4.5.1 章首课学习阶段评价 |
4.5.2 本章具体学习阶段评价 |
4.5.3 高中后续学习阶段评价 |
5 基于大观念的高中数学章首课教学设计案例 |
5.1 核心概念主线的《数列》章首课教学设计 |
5.2 中心问题主线的《统计》章首课教学设计 |
5.3 思想方法主线的《解析几何》复习章首课教学设计 |
6 研究结论及反思 |
6.1 研究结论 |
6.2 教学建议 |
6.3 不足与展望 |
参考文献 |
致谢 |
(9)APOS理论下的“数系的扩充与复数的引入”教学研究(论文提纲范文)
摘要 |
abstract |
1. 绪论 |
1.1 问题的提出 |
1.2 研究内容 |
1.3 研究意义 |
1.4 研究方法 |
2. APOS理论已有研究综述 |
2.1 APOS理论的来源与内涵 |
2.1.1 APOS理论的提出 |
2.1.2 APOS理论的内涵 |
2.2 APOS理论的四阶段模型 |
2.2.1 活动阶段 |
2.2.2 过程阶段 |
2.2.3 对象阶段 |
2.2.4 图式阶段 |
2.3 APOS理论的特点 |
2.3.1 APOS理论的循环特点 |
2.3.2 APOS理论是具有数学学科特色的学习理论 |
2.4 关于APOS理论的研究现状 |
2.4.1 关于APOS理论国外现状研究 |
2.4.2 关于APOS理论国内现状研究 |
3. “数系的扩充与复数的引入”教学现状调查 |
3.1 教材中相关内容的处理 |
3.2 “数系的扩充与复数的引入”教与学现状调查 |
3.2.1 学生学习现状调查 |
3.2.2 教师教学现状调查 |
3.3 调查结果分析 |
4. APOS理论下“数系的扩充与复数的引入”的教学实践 |
4.1 运用APOS理论可行性和必要性分析 |
4.1.1 运用APOS理论的可行性分析 |
4.1.2 运用APOS理论的必要性分析 |
4.2 APOS理论下的数学概念教学模式设计 |
4.3 APOS理论下的复数相关教学设计案例 |
4.3.1 《数系的扩充》教学设计案例 |
4.3.2 《复数的几何意义》教学设计案例 |
4.3.3 教学设计案例的分析 |
4.4 教学效果检测与分析 |
4.4.1 测试对象与内容 |
4.4.2 测试结果分析 |
4.4.3 教学反思和几点建议 |
5. 总结 |
5.1 研究结论 |
5.2 研究的不足 |
参考文献 |
附录 |
附录1: 问卷调查 |
附录2: 教师访谈提纲内容 |
附录3: 复数检测题 |
致谢 |
(10)中学数学思想的培养研究 ——基于深度教学的视角(论文提纲范文)
摘要 |
Abstract |
导论 |
第一节 问题的提出 |
一、数学育人价值实现与当前课堂教学实施的矛盾 |
二、数学学科思想教学与当前教学变革的错位 |
三、学生深度学习达成与课堂教学效果的偏离 |
第二节 研究意义 |
第三节 国内外研究综述 |
一、国内研究综述 |
(一) 关于数学课程的研究 |
(二) 关于数学知识及其教学的研究 |
(三) 关于学科思想方法的研究 |
(四) 关于数学思想的研究 |
二、国外文献综述 |
第四节 研究方法 |
第五节 研究内容 |
第一章 数学思想:内涵与意义 |
第一节 数学思想的发展回溯 |
一、数学思想的发展历史及阶段 |
二、我国数学思想在教学中的发展 |
第二节 数学思想的含义 |
第三节 数学思想的特征分析 |
一、内隐性 |
二、连续性 |
三、可迁移性 |
第四节 数学思想的价值分析 |
一、数学思想的教学价值 |
二、数学思想的发展价值 |
三、数学思想的应用价值 |
第二章 中学主要数学思想及相关概念辨析 |
第一节 数学发展史上的主要数学思想 |
第二节 中学数学教学中的数学思想 |
一、数形结合思想 |
二、分类讨论思想 |
三、转化或化归思想 |
四、类比或递推思想 |
五、构造或建模思想 |
第三节 相关概念辨析 |
一、数学知识与数学思想 |
二、数学能力与数学思想 |
三、数学方法与数学思想 |
四、数学素养与数学思想 |
第三章 当前中学数学思想教学现状分析 |
第一节 中学数学思想教学现状调查的描述分析 |
一、中学数学教师思想教学的基本情况 |
二、中学教师数学思想教学现状 |
第二节 中学教师数学思想教学的影响因素分析 |
一、教师自身对于数学思想的认知 |
二、学生数学学习的阶段性与连续性 |
三、教材与学生发展之间的关联性 |
四、教学活动组织的适切性 |
第三节 问题与讨论 |
第四章 基于深度教学的中学生数学思想建立过程 |
第一节 中学生数学思想的形成过程 |
一、以观察能力为基础 |
二、以猜想能力为辅助 |
三、论证思维的建立 |
第二节 深度学习以培养学生的数学思想 |
一、深度学习之内涵 |
二、深度学习与数学思想的建立 |
三、深度学习以培养学生的数学思想 |
第三节 深度教学以促进数学思想的培养 |
一、深度教学之意涵 |
二、深度教学与数学思想的建立 |
三、深度教学以促进数学思想的培养 |
第五章 中学数学思想及其培养策略 |
第一节 学科思想的特性与数学思想的价值 |
一、学科思想的普遍性与特殊性 |
二、数学思想的学科意蕴 |
第二节 中学主要数学思想的形成过程 |
一、中学数学思想培养所必备的学习经历 |
二、中学数学思想培养的教学过程 |
三、中学主要数学思想的培养 |
第三节 中学主要数学思想的培养策略 |
一、分类讨论思想的培养策略 |
二、数形结合思想的培养策略 |
三、转化或化归思想的培养策略 |
四、递推或类比思想的培养策略 |
五、构造或建模思想的培养策略 |
结语 |
参考文献 |
附录 |
致谢 |
四、数列极限概念教学的层次性(论文参考文献)
- [1]基于APOS理论的指数函数概念教学研究[D]. 姜绍蕊. 天津师范大学, 2021(09)
- [2]小学数学教师研读教材的实践研究 ——以Z名师工作室为例[D]. 罗瑞. 云南师范大学, 2021(08)
- [3]职前数学教师专业知识结构及水平的实证研究[D]. 王改珍. 东北师范大学, 2021(09)
- [4]面向教师教育的数学知识研究 ——以S市高中数学教研员为例[D]. 沈中宇. 华东师范大学, 2021(08)
- [5]改革开放以来高中数列内容的变迁研究 ——以人教版教科书为例[D]. 蒋玥. 云南师范大学, 2020(01)
- [6]基于UbD模式下高中函数单调性单元的逆向教学设计[D]. 郑嘉佳. 福建师范大学, 2020(12)
- [7]基于数学核心素养的高中数列教学现状调查研究[D]. 朱娟. 云南师范大学, 2020(06)
- [8]基于大观念的高中数学章首课教学设计[D]. 栗晶晶. 河北师范大学, 2020(07)
- [9]APOS理论下的“数系的扩充与复数的引入”教学研究[D]. 张彬. 扬州大学, 2019(06)
- [10]中学数学思想的培养研究 ——基于深度教学的视角[D]. 张先波. 华中师范大学, 2019(01)