最短路径算法的研究论文

最短路径算法的研究论文

问:最短路径算法
  1. 答:最短路径算法一般有Dijkstra算法,Bellman-Ford算法,Floyd算法和SPFA算法等。
    从某顶点出发,沿图的边到达另一顶点所经过的路径中,各边上权值之和最小的一条路径叫做最短路径。解决最短路的问题有以下算法,Dijkstra算法,Bellman-Ford算法,Floyd算法和SPFA算法等。
    最短路径算法问题:
    最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。算法具体的形式包括:
    (1)确定起点的最短路径问题- 即已知起始结点,求最短路径的问题。适合使用Dijkstra算法。
    (2)确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
    (3)确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径。
    (4)全局最短路径问题- 求图中所有的最短路径。适合使用Floyd-Warshall算法。
问:最短路径算法介绍 最短路径简介
  1. 答:1、从某顶点出发,沿图的边到达另一顶点所经过的路径中,各边上权值之和最小的一条路径叫做最短路径。解决最短路的问题有以下算法,Dijkstra算法,Bellman-Ford算法,Floyd算法和SPFA算法等。
    2、定义:最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。算法具体的形式包括:确定起点的最短路径问题- 即已知起始结点,求最短路径的问题。适合使用Dijkstra算法。
    3、确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
    4、确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径。全局最短路径问题- 求图中所有的最短路径。适合使用Floyd-Warshall算法。
问:最短路径算法
  1. 答:没有图怎么设计算法啊!!!
  2. 答:哈哈,我想就算给200块钱也不会有人来做吧。
    你们老师真够BT的。
    哦,原来已经有图了,我还以为你们老师让你们自己去调查南京市地图呢,呵呵。
最短路径算法的研究论文
下载Doc文档

猜你喜欢